Optical Genome Mapping for Applications in Repeat Expansion Disorders

Bart van der Sanden, Kornelia Neveling, Andy Wing Chun Pang, Syukri Shukor, Michael D. Gallagher, Stephanie L. Burke, Erik-Jan Kamsteeg, Alex Hastie, Alexander Hoischen
{"title":"Optical Genome Mapping for Applications in Repeat Expansion Disorders","authors":"Bart van der Sanden,&nbsp;Kornelia Neveling,&nbsp;Andy Wing Chun Pang,&nbsp;Syukri Shukor,&nbsp;Michael D. Gallagher,&nbsp;Stephanie L. Burke,&nbsp;Erik-Jan Kamsteeg,&nbsp;Alex Hastie,&nbsp;Alexander Hoischen","doi":"10.1002/cpz1.1094","DOIUrl":null,"url":null,"abstract":"<p>Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants &gt;500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of &gt;500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining</p><p><b>Basic Protocol 2</b>: Data generation and genome mapping using the Bionano Saphyr® System</p><p><b>Basic Protocol 3</b>: Manual <i>De Novo</i> Assembly workflow</p><p><b>Basic Protocol 4</b>: Local guided assembly workflow</p><p><b>Basic Protocol 5</b>: EnFocus Fragile X workflow</p><p><b>Basic Protocol 6</b>: Molecule distance script workflow</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.1094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.

Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining

Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System

Basic Protocol 3: Manual De Novo Assembly workflow

Basic Protocol 4: Local guided assembly workflow

Basic Protocol 5: EnFocus Fragile X workflow

Basic Protocol 6: Molecule distance script workflow

Abstract Image

应用于重复扩展疾病的光学基因组图谱。
短串联重复(STR)扩增与 60 多种遗传疾病有关。这些扩展的大小和稳定性与疾病的严重程度和发病年龄相关。因此,准确检测 STR 的绝对长度非常重要。目前的诊断方法包括重复引物 PCR 和 Southern 印迹等费力的实验室实验,但仍无法精确确定超长重复扩增的确切长度。光学基因组图谱(OGM)是传统细胞遗传学技术的一种经济、易用的替代方法,可全面检测长度大于 500 bp 的染色体畸变和结构变异,包括插入、缺失、重复、倒位、易位和拷贝数变异。在此,我们提供了准备样本和进行 OGM 的方法指导,以及运行分析流水线和使用特定重复扩增工作流来确定重复扩增超过 500 bp 的确切重复长度的方法指导。这些规程共同提供了分析任何重复扩增的长度和稳定性所需的所有细节,这些重复扩增的预期重复大小与预期野生型等位基因的差异大于 500 bp。© 2024 作者。当前协议》由 Wiley Periodicals LLC 出版。基本协议 1:基因组超高分子量 DNA 的分离、标记和染色 基本协议 2:使用 Bionano Saphyr® 系统生成数据和绘制基因组图谱 基本协议 3:手动新组装工作流程 基本协议 4:本地引导组装工作流程 基本协议 5:EnFocus Fragile X 工作流程 基本协议 6:分子距离脚本工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信