Andrei Khrennikov , Satoshi Iryama , Irina Basieva , Keiko Sato
{"title":"Quantum-like environment adaptive model for creation of phenotype","authors":"Andrei Khrennikov , Satoshi Iryama , Irina Basieva , Keiko Sato","doi":"10.1016/j.biosystems.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>The textbook conceptualization of phenotype creation, “genotype (G) + environment (E) + genotype & environment interactions (GE) <span><math><mo>↦</mo></math></span> phenotype (Ph)”, is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The <em>model is quantum-like</em>, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the <span><math><mi>E</mi></math></span>-adaptation processes described by the quantum master equation, <em>Gorini–Kossakowski–Sudarshan–Lindblad equation</em> (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of <span><math><mi>E</mi></math></span>-adaptation phenotype’s state entropy (disorder) first increases and then falls down — a stable and well-ordered phenotype is created. Traits, an organism’s phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"242 ","pages":"Article 105261"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001461/pdfft?md5=b3f2474a2025bfa5eb806c2bcb880b6b&pid=1-s2.0-S0303264724001461-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001461","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The textbook conceptualization of phenotype creation, “genotype (G) + environment (E) + genotype & environment interactions (GE) phenotype (Ph)”, is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the -adaptation processes described by the quantum master equation, Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of -adaptation phenotype’s state entropy (disorder) first increases and then falls down — a stable and well-ordered phenotype is created. Traits, an organism’s phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.