Quantum-like environment adaptive model for creation of phenotype

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andrei Khrennikov , Satoshi Iryama , Irina Basieva , Keiko Sato
{"title":"Quantum-like environment adaptive model for creation of phenotype","authors":"Andrei Khrennikov ,&nbsp;Satoshi Iryama ,&nbsp;Irina Basieva ,&nbsp;Keiko Sato","doi":"10.1016/j.biosystems.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>The textbook conceptualization of phenotype creation, “genotype (G) + environment (E) + genotype &amp; environment interactions (GE) <span><math><mo>↦</mo></math></span> phenotype (Ph)”, is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The <em>model is quantum-like</em>, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the <span><math><mi>E</mi></math></span>-adaptation processes described by the quantum master equation, <em>Gorini–Kossakowski–Sudarshan–Lindblad equation</em> (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of <span><math><mi>E</mi></math></span>-adaptation phenotype’s state entropy (disorder) first increases and then falls down — a stable and well-ordered phenotype is created. Traits, an organism’s phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001461/pdfft?md5=b3f2474a2025bfa5eb806c2bcb880b6b&pid=1-s2.0-S0303264724001461-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The textbook conceptualization of phenotype creation, “genotype (G) + environment (E) + genotype & environment interactions (GE) phenotype (Ph)”, is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the E-adaptation processes described by the quantum master equation, Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of E-adaptation phenotype’s state entropy (disorder) first increases and then falls down — a stable and well-ordered phenotype is created. Traits, an organism’s phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.

创造表型的类量子环境适应模型
教科书中关于表型产生的概念,即 "基因型(G)+环境(E)+基因型与环境相互作用(GE)↦表型(Ph)",是用开放量子系统理论(OQST)或更广义的自适应动力学理论(ADT)来建模的。该模型是类量子模型,即与生物系统中的量子物理过程无关。一般来说,这种建模是关于量子形式主义和方法论在物理学之外的应用。宏观生物系统,在我们的例子中是基因型和表型,被视为信息处理器,其运作符合量子信息论的规律。表型是量子主方程戈里尼-科萨科夫斯基-苏达山-林德布拉德方程(GKSL)所描述的电子适应过程的输出。其静止状态与表型相对应。我们强调了一类以(冯-诺依曼)熵的骆驼状图为特征的 GKSL 动力学:在 E 适应过程中,表型的状态熵(无序)先是增加,然后下降--一个稳定而有序的表型就产生了。生物体的表型特征--性状,是量子测量理论中的模型,一般是由正算子有值量度(POVMs)给出的非锐利观测值。本文也是对量子信息生物学方法和数学装置的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信