Exploring α-synuclein stability under the external electrostatic field: Effect of repeat unit

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Javokhir Khursandov , Rasulbek Mashalov , Mukhriddin Makhkamov , Farkhad Turgunboev , Avez Sharipov , Jamoliddin Razzokov
{"title":"Exploring α-synuclein stability under the external electrostatic field: Effect of repeat unit","authors":"Javokhir Khursandov ,&nbsp;Rasulbek Mashalov ,&nbsp;Mukhriddin Makhkamov ,&nbsp;Farkhad Turgunboev ,&nbsp;Avez Sharipov ,&nbsp;Jamoliddin Razzokov","doi":"10.1016/j.jsb.2024.108109","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field’s effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"216 3","pages":"Article 108109"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000492","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson’s disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field’s effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.

探索α-突触核蛋白在外部静电场下的稳定性:重复单元的影响
帕金森病(Parkinson's disease,PD)是一类神经退行性疾病(Neurodegenerative disorders,ND),目前尚缺乏全面而明确的治疗策略。帕金森病的病因可归结为一种名为α-突触核蛋白的蛋白质的存在和聚集。研究人员观察到,外部静电场的应用有可能促使纤维结构分离成肽。为了理解这一现象,我们在 0.1 V/nm 电场的影响下,应用分子动力学(MD)模拟技术对α-突触核蛋白肽进行了模拟研究。MD 模拟的结果表明,在外部电场的作用下,α-突触核蛋白的单体和寡聚体发生了显著的构象变化,从而阻止了它们的进一步聚集。然而,随着模型系统中肽单元数量的增加,形成三聚体和四聚体时,对电场的稳定性也会增加。较大聚集体稳定性的增强表明,在α-突触核蛋白组装过程中存在一个临界点,在该临界点上,电场破坏聚集的效果会减弱。因此,我们的研究结果表明,早期诊断和干预对于预防帕金森病的发展至关重要。当α-突触核蛋白主要以单体或二聚体形式存在时,即使应用较低的电场也能有效地破坏最初的聚集过程。在早期阶段抑制α-突触核蛋白纤维的形成,可能会阻止更稳定的致病性α-突触核蛋白纤维的形成,从而成为防治帕金森病的可行方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信