Improved Fuzzy Cognitive Maps for Gene Regulatory Networks Inference based on time series data.

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Marzieh Emadi, Farsad Zamani Boroujeni, Jamshid Pirgazi
{"title":"Improved Fuzzy Cognitive Maps for Gene Regulatory Networks Inference based on time series data.","authors":"Marzieh Emadi, Farsad Zamani Boroujeni, Jamshid Pirgazi","doi":"10.1109/TCBB.2024.3423383","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray data provide lots of information regarding gene expression levels. Due to the large amount of such data, their analysis requires sufficient computational methods for identifying and analyzing gene regulation networks; however, researchers in this field are faced with numerous challenges such as consideration for too many genes and at the same time, the limited number of samples and their noisy nature of the data. In this paper, a hybrid method base on fuzzy cognitive map and compressed sensing is used to identify interactions between genes. For this purpose, in inference of the gene regulation network, the Ensemble Kalman filtered compressed sensing is used to learn the fuzzy cognitive map. Using the Ensemble Kalman filter and compressed sensing, the fuzzy cognitive map will be robust against noise. The proposed algorithm is evaluated using several metrics and compared with several well know methods such as LASSOFCM, KFRegular, CMI2NI. The experimental results show that the proposed method outperforms methods proposed in recent years in terms of SSmean, Data Error and accuracy.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3423383","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microarray data provide lots of information regarding gene expression levels. Due to the large amount of such data, their analysis requires sufficient computational methods for identifying and analyzing gene regulation networks; however, researchers in this field are faced with numerous challenges such as consideration for too many genes and at the same time, the limited number of samples and their noisy nature of the data. In this paper, a hybrid method base on fuzzy cognitive map and compressed sensing is used to identify interactions between genes. For this purpose, in inference of the gene regulation network, the Ensemble Kalman filtered compressed sensing is used to learn the fuzzy cognitive map. Using the Ensemble Kalman filter and compressed sensing, the fuzzy cognitive map will be robust against noise. The proposed algorithm is evaluated using several metrics and compared with several well know methods such as LASSOFCM, KFRegular, CMI2NI. The experimental results show that the proposed method outperforms methods proposed in recent years in terms of SSmean, Data Error and accuracy.

基于时间序列数据的基因调控网络推断的改进型模糊认知图。
微阵列数据提供了大量有关基因表达水平的信息。然而,该领域的研究人员面临着诸多挑战,如需要考虑的基因数量过多,同时样本数量有限以及数据的噪声特性。本文采用基于模糊认知图谱和压缩传感的混合方法来识别基因之间的相互作用。为此,在推断基因调控网络时,使用了集合卡尔曼滤波压缩传感来学习模糊认知图。利用组合卡尔曼滤波和压缩传感,模糊认知图谱将对噪声具有鲁棒性。我们使用多个指标对所提出的算法进行了评估,并将其与 LASSOFCM、KFRegular、CMI2NI 等几种已知方法进行了比较。实验结果表明,所提出的方法在 SSmean、数据误差和准确性方面都优于近年来提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信