Lu Qin, Shishun Zhao, Wenlai Guo, Tiejun Tong, Ke Yang
{"title":"A comparison of two models for detecting inconsistency in network meta-analysis","authors":"Lu Qin, Shishun Zhao, Wenlai Guo, Tiejun Tong, Ke Yang","doi":"10.1002/jrsm.1734","DOIUrl":null,"url":null,"abstract":"<p>The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be reliably used as a clinical guidance. Among the existing methods for detecting inconsistency, two commonly used models are the design-by-treatment interaction model and the side-splitting models. While the original side-splitting model was initially estimated using a Bayesian approach, in this context, we employ the frequentist approach. In this paper, we review these two types of models comprehensively as well as explore their relationship by treating the data structure of network meta-analysis as missing data and parameterizing the potential complete data for each model. Through both analytical and numerical studies, we verify that the side-splitting models are specific instances of the design-by-treatment interaction model, incorporating additional assumptions or under certain data structure. Moreover, the design-by-treatment interaction model exhibits robust performance across different data structures on inconsistency detection compared to the side-splitting models. Finally, as a practical guidance for inconsistency detection, we recommend utilizing the design-by-treatment interaction model when there is a lack of information about the potential location of inconsistency. By contrast, the side-splitting models can serve as a supplementary method especially when the number of studies in each design is small, enabling a comprehensive assessment of inconsistency from both global and local perspectives.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 6","pages":"851-871"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1734","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be reliably used as a clinical guidance. Among the existing methods for detecting inconsistency, two commonly used models are the design-by-treatment interaction model and the side-splitting models. While the original side-splitting model was initially estimated using a Bayesian approach, in this context, we employ the frequentist approach. In this paper, we review these two types of models comprehensively as well as explore their relationship by treating the data structure of network meta-analysis as missing data and parameterizing the potential complete data for each model. Through both analytical and numerical studies, we verify that the side-splitting models are specific instances of the design-by-treatment interaction model, incorporating additional assumptions or under certain data structure. Moreover, the design-by-treatment interaction model exhibits robust performance across different data structures on inconsistency detection compared to the side-splitting models. Finally, as a practical guidance for inconsistency detection, we recommend utilizing the design-by-treatment interaction model when there is a lack of information about the potential location of inconsistency. By contrast, the side-splitting models can serve as a supplementary method especially when the number of studies in each design is small, enabling a comprehensive assessment of inconsistency from both global and local perspectives.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.