Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jackson C. Fink, Danielle Landry and Lauren J. Webb*, 
{"title":"Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe","authors":"Jackson C. Fink,&nbsp;Danielle Landry and Lauren J. Webb*,&nbsp;","doi":"10.1021/acs.biochem.4c00075","DOIUrl":null,"url":null,"abstract":"<p >The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.

Abstract Image

Abstract Image

利用硫氰酸盐探针的振动斯塔克效应光谱探测 H-Ras 酪氨酸 32 突变对内在 GTP水解的静电效应
野生型 H-Ras 蛋白在多种细胞信号通路中起着分子开关的作用,关键残基的突变会导致构成性活性肿瘤蛋白。然而,关于 H-Ras 固有 GTPase 活性的机制还存在一些争论。有一种假设认为,有序的水分子在活性位点通过 Q61(一个高度转化的氨基酸位点)和 Y32(一个以前从未研究过的位置)进行配位。在这里,我们通过比较 Y32X 突变体的 GTP 水解速率和通过附近的硫氰酸盐振动探针测得的每个突变的振动能移,来估算 Y32 位置变化引起的静电环境变化,从而研究 Y32 位置对 GTP 水解的静电贡献。我们进一步将每个突变的振动能移与各自侧链的水合电位进行了比较,结果表明 Y32 在招募水分子进入活性位点以促进水解方面的关键作用不如 Q61。我们的研究结果表明,Y32 的立体贡献和 Q61 的静电贡献之间存在明显的相互作用,而这两种贡献对于 GTP 的内在水解都至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信