{"title":"Hyperarithmetical complexity of infinitary action logic with multiplexing","authors":"Tikhon Pshenitsyn","doi":"10.1093/jigpal/jzae078","DOIUrl":null,"url":null,"abstract":"In 2023, Kuznetsov and Speranski introduced infinitary action logic with multiplexing $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ and proved that the derivability problem for it lies between the $\\omega $ level and the $\\omega ^{\\omega }$ level of the hyperarithmetical hierarchy. We prove that this problem is $\\varDelta ^{0}_{\\omega ^{\\omega }}$-complete under Turing reductions. Namely, we show that it is recursively isomorphic to the satisfaction predicate for computable infinitary formulas of rank less than $\\omega ^{\\omega }$ in the language of arithmetic. As a consequence we prove that the closure ordinal for $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ equals $\\omega ^{\\omega }$. We also prove that the fragment of $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ where Kleene star is not allowed to be in the scope of the subexponential is $\\varDelta ^{0}_{\\omega ^{\\omega }}$-complete. Finally, we present a family of logics, which are fragments of $!^{m}\\nabla \\textrm{ACT}_{\\omega }$, such that the complexity of the $k$-th logic lies between $\\varDelta ^{0}_{\\omega ^{k}}$ and $\\varDelta ^{0}_{\\omega ^{k+1}}$.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"51 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae078","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In 2023, Kuznetsov and Speranski introduced infinitary action logic with multiplexing $!^{m}\nabla \textrm{ACT}_{\omega }$ and proved that the derivability problem for it lies between the $\omega $ level and the $\omega ^{\omega }$ level of the hyperarithmetical hierarchy. We prove that this problem is $\varDelta ^{0}_{\omega ^{\omega }}$-complete under Turing reductions. Namely, we show that it is recursively isomorphic to the satisfaction predicate for computable infinitary formulas of rank less than $\omega ^{\omega }$ in the language of arithmetic. As a consequence we prove that the closure ordinal for $!^{m}\nabla \textrm{ACT}_{\omega }$ equals $\omega ^{\omega }$. We also prove that the fragment of $!^{m}\nabla \textrm{ACT}_{\omega }$ where Kleene star is not allowed to be in the scope of the subexponential is $\varDelta ^{0}_{\omega ^{\omega }}$-complete. Finally, we present a family of logics, which are fragments of $!^{m}\nabla \textrm{ACT}_{\omega }$, such that the complexity of the $k$-th logic lies between $\varDelta ^{0}_{\omega ^{k}}$ and $\varDelta ^{0}_{\omega ^{k+1}}$.
期刊介绍:
Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering.
Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.