Geometry of entanglement and separability in Hilbert subspaces of dimension up to three

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Rotem Liss, Tal Mor, Andreas Winter
{"title":"Geometry of entanglement and separability in Hilbert subspaces of dimension up to three","authors":"Rotem Liss,&nbsp;Tal Mor,&nbsp;Andreas Winter","doi":"10.1007/s11005-024-01816-w","DOIUrl":null,"url":null,"abstract":"<div><p>We present a complete classification of the geometry of the mutually complementary sets of entangled and separable states in three-dimensional Hilbert subspaces of bipartite and multipartite quantum systems. Our analysis begins by finding the geometric structure of the pure product states in a given three-dimensional Hilbert subspace, which determines all the possible separable and entangled mixed states over the same subspace. In bipartite systems, we characterise the 14 possible qualitatively different geometric shapes for the set of separable states in any three-dimensional Hilbert subspace (5 classes which also appear in two-dimensional subspaces and were found and analysed by Boyer et al. (Phys Rev A 95:032308, 2017. https://doi.org/10.1103/PhysRevA.95.032308), and 9 novel classes which appear only in three-dimensional subspaces), describe their geometries, and provide figures illustrating them. We also generalise these results to characterise the sets of fully separable states (and hence the complementary sets of somewhat entangled states) in three-dimensional subspaces of multipartite systems. Our results show which geometrical forms quantum entanglement can and cannot take in low-dimensional subspaces.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01816-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01816-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a complete classification of the geometry of the mutually complementary sets of entangled and separable states in three-dimensional Hilbert subspaces of bipartite and multipartite quantum systems. Our analysis begins by finding the geometric structure of the pure product states in a given three-dimensional Hilbert subspace, which determines all the possible separable and entangled mixed states over the same subspace. In bipartite systems, we characterise the 14 possible qualitatively different geometric shapes for the set of separable states in any three-dimensional Hilbert subspace (5 classes which also appear in two-dimensional subspaces and were found and analysed by Boyer et al. (Phys Rev A 95:032308, 2017. https://doi.org/10.1103/PhysRevA.95.032308), and 9 novel classes which appear only in three-dimensional subspaces), describe their geometries, and provide figures illustrating them. We also generalise these results to characterise the sets of fully separable states (and hence the complementary sets of somewhat entangled states) in three-dimensional subspaces of multipartite systems. Our results show which geometrical forms quantum entanglement can and cannot take in low-dimensional subspaces.

Abstract Image

三维以内希尔伯特子空间中的纠缠几何与可分性
我们提出了双分式和多分式量子系统三维希尔伯特子空间中纠缠态和可分离态互补集几何的完整分类。我们的分析从给定三维希尔伯特子空间中纯乘积态的几何结构开始,它决定了同一子空间中所有可能的可分离态和纠缠混合态。在二元系统中,我们表征了任意三维希尔伯特子空间中可分离态集合的 14 种可能的质的不同几何形状(其中 5 类也出现在二维子空间中,由 Boyer 等人发现并分析(Phys Rev A 95:032308, 2017. https://doi.org/10.1103/PhysRevA.95.032308),9 类新的只出现在三维子空间中),描述了它们的几何形状,并提供了图示。我们还对这些结果进行了推广,以描述多方系统三维子空间中完全可分离状态集(以及由此产生的某种纠缠状态的互补集)的特征。我们的结果表明了量子纠缠在低维子空间中可以和不可以采取的几何形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信