Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative

IF 1.7 4区 数学 Q1 Mathematics
Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour
{"title":"Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative","authors":"Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour","doi":"10.1186/s13661-024-01863-1","DOIUrl":null,"url":null,"abstract":"The present research work investigates some new results for a fractional generalized Sturm–Liouville–Langevin (FGSLL) equation involving the Ψ-Caputo fractional derivative with a modified argument. We prove the uniqueness of the solution using the Banach contraction principle endowed with a norm of the Ψ-Bielecki-type. Meanwhile, the fixed-point theorems of the Leray–Schauder and Krasnoselskii type associated with the Ψ-Bielecki-type norm are used to derive the existence properties by removing some strong conditions. We use the generalized Gronwall-type inequality to discuss Ulam–Hyers (UH), generalized Ulam–Hyers (GUH), Ulam–Hyers–Rassias (UHR), and generalized Ulam–Hyers–Rassias (GUHR) stability of these solutions. Lastly, three examples are provided to show the effectiveness of our main results for different cases of (FGSLL)-problem such as Caputo-type Sturm–Liouville, Caputo-type Langevin, Caputo–Erdélyi–Kober-type Langevin problems.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01863-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The present research work investigates some new results for a fractional generalized Sturm–Liouville–Langevin (FGSLL) equation involving the Ψ-Caputo fractional derivative with a modified argument. We prove the uniqueness of the solution using the Banach contraction principle endowed with a norm of the Ψ-Bielecki-type. Meanwhile, the fixed-point theorems of the Leray–Schauder and Krasnoselskii type associated with the Ψ-Bielecki-type norm are used to derive the existence properties by removing some strong conditions. We use the generalized Gronwall-type inequality to discuss Ulam–Hyers (UH), generalized Ulam–Hyers (GUH), Ulam–Hyers–Rassias (UHR), and generalized Ulam–Hyers–Rassias (GUHR) stability of these solutions. Lastly, three examples are provided to show the effectiveness of our main results for different cases of (FGSLL)-problem such as Caputo-type Sturm–Liouville, Caputo-type Langevin, Caputo–Erdélyi–Kober-type Langevin problems.
涉及Ψ-卡普托分数导数的广义 Sturm-Liouville-Langevin 微分方程的Ψ-Bielecki 型规范不等式
本研究工作探讨了涉及Ψ-卡普托分数导数的分数广义斯特姆-利乌维尔-朗格文(FGSLL)方程的一些新结果。我们利用赋予Ψ-比勒茨基类型规范的巴拿赫收缩原理证明了解的唯一性。同时,我们利用与 Ψ-Bielecki- 型规范相关的 Leray-Schauder 和 Krasnoselskii 型定点定理,通过去除一些强条件,推导出存在性。我们利用广义格罗沃尔型不等式讨论了这些解的乌兰-海尔斯(UH)、广义乌兰-海尔斯(GUH)、乌兰-海尔斯-拉西亚(UHR)和广义乌兰-海尔斯-拉西亚(GUHR)稳定性。最后,我们提供了三个例子来说明我们的主要结果对不同情况的 (FGSLL) 问题的有效性,如 Caputo-type Sturm-Liouville、Caputo-type Langevin、Caputo-Erdélyi-Kober-type Langevin 问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信