Brooke N. Diehl, Jumanah Hamdi, Janelle Do, Loandi Cruz, Marisa Spengeman, Frank R. Fronczek, Dist. Prof. Mark L. Trudell
{"title":"Synthesis and Characterization of Cu@Hal, an Effective Heterogeneous Catalyst for Aqueous Multicomponent Azide-Alkyne [3+2] Cycloaddition Reactions","authors":"Brooke N. Diehl, Jumanah Hamdi, Janelle Do, Loandi Cruz, Marisa Spengeman, Frank R. Fronczek, Dist. Prof. Mark L. Trudell","doi":"10.1002/cnma.202400212","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of a nanocomposite material consisting of Cu nanoparticles encapsulated in halloysite nanotubes (Cu@Hal) was achieved by the reduction of Cu(NO<sub>3</sub>)<sub>2</sub> ⋅ 3H<sub>2</sub>O with sodium ascorbate/sodium borohydride in an aqueous suspension of trisodium citrate and halloysite. The nanocomposite was found to be an effective heterogeneous catalyst for the multicomponent copper catalyzed azide-alkyne cycloaddition reaction (CuAAC). A variety of terminal alkynes reacted with benzyl halides and sodium azide in the presence of Cu@Hal in water. In situ formation of the organic azides afforded the corresponding 1,4-disubstituted 1,2,3-triazoles regioselectivily, in excellent yields. The catalyst was easily recovered and recycled without loss of activity with low metal leaching.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400212","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of a nanocomposite material consisting of Cu nanoparticles encapsulated in halloysite nanotubes (Cu@Hal) was achieved by the reduction of Cu(NO3)2 ⋅ 3H2O with sodium ascorbate/sodium borohydride in an aqueous suspension of trisodium citrate and halloysite. The nanocomposite was found to be an effective heterogeneous catalyst for the multicomponent copper catalyzed azide-alkyne cycloaddition reaction (CuAAC). A variety of terminal alkynes reacted with benzyl halides and sodium azide in the presence of Cu@Hal in water. In situ formation of the organic azides afforded the corresponding 1,4-disubstituted 1,2,3-triazoles regioselectivily, in excellent yields. The catalyst was easily recovered and recycled without loss of activity with low metal leaching.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.