{"title":"The influence of c-subnormality subgroups on the structure of finite groups","authors":"Dana Jaraden, Ali Ateiwi, Jehad Jaraden","doi":"10.1515/gmj-2024-2036","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>H</jats:italic> be a subgroup of a group <jats:italic>G</jats:italic>. We say that <jats:italic>H</jats:italic> is <jats:italic>c</jats:italic>-subnormal in <jats:italic>G</jats:italic> if there exists a subnormal subgroup <jats:italic>T</jats:italic> of <jats:italic>G</jats:italic> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo></m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2036_eq_0064.png\"/> <jats:tex-math>{HT=G}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo>∩</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>⩽</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>G</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2036_eq_0065.png\"/> <jats:tex-math>{H\\cap T\\leqslant H_{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>H</m:mi> <m:mi>G</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2036_eq_0073.png\"/> <jats:tex-math>{H_{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximal normal subgroup of <jats:italic>G</jats:italic> which is contained in <jats:italic>H</jats:italic>. In this paper, we investigate the structure of a finite group <jats:italic>G</jats:italic> under the assumption that all maximal subgroups are <jats:italic>c</jats:italic>-subnormal subgroups and present some new conditions for supersolvability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let H be a subgroup of a group G. We say that H is c-subnormal in G if there exists a subnormal subgroup T of G such that HT=G{HT=G} and H∩T⩽HG{H\cap T\leqslant H_{G}}, where HG{H_{G}} is the maximal normal subgroup of G which is contained in H. In this paper, we investigate the structure of a finite group G under the assumption that all maximal subgroups are c-subnormal subgroups and present some new conditions for supersolvability.
如果存在一个 G 的子正则子群 T,使得 H T = G {HT=G},并且 H ∩ T ⩽ H G {H\cap T\leqslant H_{G}} ,我们就说 H 在 G 中是 c 正则子群。 本文研究了在所有最大子群都是 c-subnormal 子群的假设下有限群 G 的结构,并提出了一些新的超可溶条件。