Properties of Nb x Ti(1−x)N thin films deposited on 300 mm silicon wafers for upscaling superconducting digital circuits

Daniel Pérez Lozano, Jean-Philippe Soulié, Blake Hodges, Xiaoyu Piao, Sabine O’Neal, Anne-Marie Valente-Feliciano, Quentin Herr, Zsolt Tőkei, Min-Soo Kim, Anna Herr
{"title":"Properties of Nb x Ti(1−x)N thin films deposited on 300 mm silicon wafers for upscaling superconducting digital circuits","authors":"Daniel Pérez Lozano, Jean-Philippe Soulié, Blake Hodges, Xiaoyu Piao, Sabine O’Neal, Anne-Marie Valente-Feliciano, Quentin Herr, Zsolt Tőkei, Min-Soo Kim, Anna Herr","doi":"10.1088/1361-6668/ad4b61","DOIUrl":null,"url":null,"abstract":"Scaling superconducting digital circuits requires fundamental changes in the current material set and fabrication process. The transition to 300 mm wafers and the implementation of advanced lithography are instrumental in facilitating mature CMOS processes, ensuring uniformity, and optimizing the yield. This study explores the properties of Nb<italic toggle=\"yes\">\n<sub>x</sub>\n</italic>Ti<sub>(1−<italic toggle=\"yes\">x</italic>)</sub>N films fabricated by magnetron DC sputtering on 300 mm Si wafers. As a promising alternative to traditional Nb in device manufacturing, Nb<italic toggle=\"yes\">\n<sub>x</sub>\n</italic>Ti<sub>(1−<italic toggle=\"yes\">x</italic>)</sub>N offers numerous advantages, including enhanced stability and scalability to smaller dimensions, in both processing and design. As a ternary material, Nb<italic toggle=\"yes\">\n<sub>x</sub>\n</italic>Ti<sub>(1−<italic toggle=\"yes\">x</italic>)</sub>N allows engineering material parameters by changing deposition conditions. The engineered properties can be used to modulate device parameters through the stack and mitigate failure modes. We report characterization of Nb<italic toggle=\"yes\">\n<sub>x</sub>\n</italic>Ti<sub>(1−<italic toggle=\"yes\">x</italic>)</sub>N films at less than 2% thickness variability, 2.4% <italic toggle=\"yes\">T</italic>\n<sub>c</sub> variability and 3% composition variability. Film resistivity (140–375 Ωcm) shows a strong correlation with the film oxygen content, while the critical temperature <italic toggle=\"yes\">T</italic>\n<sub>c</sub> (4.6 K–14.1 K) is strongly affected by film stoichiometry and its microstructure has only a moderate effect on modifying <italic toggle=\"yes\">T</italic>\n<sub>c</sub>. Our results offer insights about the interplay between film stoichiometry, film microstructure and critical temperature.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad4b61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scaling superconducting digital circuits requires fundamental changes in the current material set and fabrication process. The transition to 300 mm wafers and the implementation of advanced lithography are instrumental in facilitating mature CMOS processes, ensuring uniformity, and optimizing the yield. This study explores the properties of Nb x Ti(1−x)N films fabricated by magnetron DC sputtering on 300 mm Si wafers. As a promising alternative to traditional Nb in device manufacturing, Nb x Ti(1−x)N offers numerous advantages, including enhanced stability and scalability to smaller dimensions, in both processing and design. As a ternary material, Nb x Ti(1−x)N allows engineering material parameters by changing deposition conditions. The engineered properties can be used to modulate device parameters through the stack and mitigate failure modes. We report characterization of Nb x Ti(1−x)N films at less than 2% thickness variability, 2.4% T c variability and 3% composition variability. Film resistivity (140–375 Ωcm) shows a strong correlation with the film oxygen content, while the critical temperature T c (4.6 K–14.1 K) is strongly affected by film stoichiometry and its microstructure has only a moderate effect on modifying T c. Our results offer insights about the interplay between film stoichiometry, film microstructure and critical temperature.
沉积在 300 毫米硅晶片上的 Nb x Ti(1-x)N 薄膜的特性,用于升级超导数字电路
要扩大超导数字电路的规模,就必须从根本上改变当前的材料组合和制造工艺。向 300 毫米晶圆的过渡和先进光刻技术的实施有助于促进成熟的 CMOS 工艺、确保一致性和优化产量。本研究探讨了在 300 毫米硅晶片上通过磁控直流溅射制造的 NbxTi(1-x)N 薄膜的特性。NbxTi(1-x)N 作为传统铌材料的一种有前途的设备制造替代材料,在加工和设计方面具有众多优势,包括稳定性更强、可扩展到更小的尺寸。作为一种三元材料,NbxTi(1-x)N 可以通过改变沉积条件来设计材料参数。工程特性可用于通过堆栈调节器件参数并减轻失效模式。我们报告了 NbxTi(1-x)N 薄膜的特性,厚度变化率小于 2%,Tc 变化率小于 2.4%,成分变化率小于 3%。薄膜电阻率(140-375 Ωcm)与薄膜氧含量密切相关,而临界温度 Tc(4.6 K-14.1 K)受薄膜化学计量的影响很大,其微观结构对 Tc 的影响不大。我们的研究结果为薄膜化学计量、薄膜微观结构和临界温度之间的相互作用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信