Hesham A. Abdushkour, Morteza Saadatmorad, Samir Khatir, Brahim Benaissa, Faisal Al Thobiani, Alaa Uthman Khawaja
{"title":"Structural Damage Detection by Derivative-Based Wavelet Transforms","authors":"Hesham A. Abdushkour, Morteza Saadatmorad, Samir Khatir, Brahim Benaissa, Faisal Al Thobiani, Alaa Uthman Khawaja","doi":"10.1007/s13369-024-09115-1","DOIUrl":null,"url":null,"abstract":"<p>In practical applications of wavelet transform, engineers and practitioners encounter challenges that arise due to the disparity between wavelet theory, which deals with continuous functions, and the digital nature of signals in engineering contexts. In particular, wavelet transform theory does not consider the effect of changes in digital signals on the result of the wavelet transform. This paper emphasizes the influence of the type of digital signals on the accuracy of wavelet transform in engineering applications and proposes an efficient wavelet function based on the derivative of the signal for better damage detection in beam structures. For this purpose, the obtained signals from the mode shapes of the steel beam are used to examine the efficiency of the proposed derivative-based wavelet transform. The effects of changes in boundary conditions, location of damage, and level of damage on the performance of the proposed method, are evaluated. Findings show that when we use the derivate of the signal in the wavelet transform, the location of damage in all damage scenarios is detected with high accuracy. This research demonstrates the importance of the type of signal used in the wavelet transform for enhancing the precision of fault and damage detection in signals.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09115-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
In practical applications of wavelet transform, engineers and practitioners encounter challenges that arise due to the disparity between wavelet theory, which deals with continuous functions, and the digital nature of signals in engineering contexts. In particular, wavelet transform theory does not consider the effect of changes in digital signals on the result of the wavelet transform. This paper emphasizes the influence of the type of digital signals on the accuracy of wavelet transform in engineering applications and proposes an efficient wavelet function based on the derivative of the signal for better damage detection in beam structures. For this purpose, the obtained signals from the mode shapes of the steel beam are used to examine the efficiency of the proposed derivative-based wavelet transform. The effects of changes in boundary conditions, location of damage, and level of damage on the performance of the proposed method, are evaluated. Findings show that when we use the derivate of the signal in the wavelet transform, the location of damage in all damage scenarios is detected with high accuracy. This research demonstrates the importance of the type of signal used in the wavelet transform for enhancing the precision of fault and damage detection in signals.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.