A Multiscale Perspective on Maximum Marginal Likelihood Estimation

O. Deniz Akyildiz, Iain Souttar, Michela Ottobre
{"title":"A Multiscale Perspective on Maximum Marginal Likelihood Estimation","authors":"O. Deniz Akyildiz, Iain Souttar, Michela Ottobre","doi":"arxiv-2406.04187","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a multiscale perspective on the problem of maximum\nmarginal likelihood estimation. We consider and analyse a diffusion-based\nmaximum marginal likelihood estimation scheme using ideas from multiscale\ndynamics. Our perspective is based on stochastic averaging; we make an explicit\nconnection between ideas in applied probability and parameter inference in\ncomputational statistics. In particular, we consider a general class of coupled\nLangevin diffusions for joint inference of latent variables and parameters in\nstatistical models, where the latent variables are sampled from a fast Langevin\nprocess (which acts as a sampler), and the parameters are updated using a slow\nLangevin process (which acts as an optimiser). We show that the resulting\nsystem of stochastic differential equations (SDEs) can be viewed as a two-time\nscale system. To demonstrate the utility of such a perspective, we show that\nthe averaged parameter dynamics obtained in the limit of scale separation can\nbe used to estimate the optimal parameter, within the strongly convex setting.\nWe do this by using recent uniform-in-time non-asymptotic averaging bounds.\nFinally, we conclude by showing that the slow-fast algorithm we consider here,\ntermed Slow-Fast Langevin Algorithm, performs on par with state-of-the-art\nmethods on a variety of examples. We believe that the stochastic averaging\napproach we provide in this paper enables us to look at these algorithms from a\nfresh angle, as well as unlocking the path to develop and analyse new methods\nusing well-established averaging principles.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide a multiscale perspective on the problem of maximum marginal likelihood estimation. We consider and analyse a diffusion-based maximum marginal likelihood estimation scheme using ideas from multiscale dynamics. Our perspective is based on stochastic averaging; we make an explicit connection between ideas in applied probability and parameter inference in computational statistics. In particular, we consider a general class of coupled Langevin diffusions for joint inference of latent variables and parameters in statistical models, where the latent variables are sampled from a fast Langevin process (which acts as a sampler), and the parameters are updated using a slow Langevin process (which acts as an optimiser). We show that the resulting system of stochastic differential equations (SDEs) can be viewed as a two-time scale system. To demonstrate the utility of such a perspective, we show that the averaged parameter dynamics obtained in the limit of scale separation can be used to estimate the optimal parameter, within the strongly convex setting. We do this by using recent uniform-in-time non-asymptotic averaging bounds. Finally, we conclude by showing that the slow-fast algorithm we consider here, termed Slow-Fast Langevin Algorithm, performs on par with state-of-the-art methods on a variety of examples. We believe that the stochastic averaging approach we provide in this paper enables us to look at these algorithms from a fresh angle, as well as unlocking the path to develop and analyse new methods using well-established averaging principles.
最大边际似然估计的多尺度视角
本文从多尺度的角度探讨了最大边际似然估计问题。我们利用多尺度动力学的思想,考虑并分析了基于扩散的最大边际似然估计方案。我们的视角基于随机平均;我们将应用概率和计算统计中的参数推断的思想明确地联系起来。特别是,我们考虑了用于统计模型中潜在变量和参数联合推断的一类耦合朗文扩散,其中潜在变量从快速朗文过程(充当采样器)中采样,而参数则使用慢速朗文过程(充当优化器)更新。我们证明,由此产生的随机微分方程(SDE)系统可被视为一个双时间尺度系统。为了证明这种观点的实用性,我们展示了在尺度分离极限下获得的平均参数动态,可以用来估计强凸设置下的最优参数。最后,我们通过展示我们在这里考虑的慢速算法(称为慢速朗文算法),在各种示例中的表现与最新方法相当,从而得出结论。我们相信,我们在本文中提供的随机平均方法使我们能够从一个全新的角度来看待这些算法,同时也为我们利用成熟的平均原理来开发和分析新方法开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信