Error estimates for simplified Levenberg–Marquardt method for nonlinear ill-posed operator equations in Hilbert Spaces

IF 0.9 4区 数学 Q2 MATHEMATICS
Pallavi Mahale, Ankush Kumar
{"title":"Error estimates for simplified Levenberg–Marquardt method for nonlinear ill-posed operator equations in Hilbert Spaces","authors":"Pallavi Mahale, Ankush Kumar","doi":"10.1515/jiip-2023-0090","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the simplified Levenberg–Marquardt method for nonlinear ill-posed inverse problems in Hilbert spaces for obtaining stable approximations of solutions to the ill-posed nonlinear equations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mi>y</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0323.png\"/> <jats:tex-math>{F(u)=y}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>F</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\"script\">𝒟</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊂</m:mo> <m:mi>𝖴</m:mi> <m:mo>→</m:mo> <m:mi>𝖸</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0325.png\"/> <jats:tex-math>{F:\\mathcal{D}(F)\\subset\\mathsf{U}\\to\\mathsf{Y}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nonlinear operator between Hilbert spaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝖴</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0402.png\"/> <jats:tex-math>{\\mathsf{U}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝖸</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0403.png\"/> <jats:tex-math>{\\mathsf{Y}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The method is defined as follows: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>δ</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>u</m:mi> <m:mi>n</m:mi> <m:mi>δ</m:mi> </m:msubsup> <m:mo>-</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>α</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>I</m:mi> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>u</m:mi> <m:mi>n</m:mi> <m:mi>δ</m:mi> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:msup> <m:mi>y</m:mi> <m:mi>δ</m:mi> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0294.png\"/> <jats:tex-math>u_{n+1}^{\\delta}=u_{n}^{\\delta}-(T_{0}^{\\ast}T_{0}+\\alpha_{n}I)^{-1}T_{0}^{% \\ast}(F(u_{n}^{\\delta})-y^{\\delta}),</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0341.png\"/> <jats:tex-math>{T_{0}=F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0343.png\"/> <jats:tex-math>{T_{0}^{\\ast}=F^{\\prime}(u_{0})^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0327.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the Frèchet derivative of <jats:italic>F</jats:italic> at an initial guess <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"script\">𝒟</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0518.png\"/> <jats:tex-math>{u_{0}\\in\\mathcal{D}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exact solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>u</m:mi> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0512.png\"/> <jats:tex-math>{u^{\\dagger}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0326.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the adjoint of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0327.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0429.png\"/> <jats:tex-math>{\\{\\alpha_{n}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an a priori chosen sequence of non-negative real numbers satisfying suitable properties. We use Morozov-type stopping rule to terminate the iterations. Under suitable non-linearity conditions on operator <jats:italic>F</jats:italic>, we show convergence of the method and also obtain a convergence rate result under a Hölder-type source condition on the element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>-</m:mo> <m:msup> <m:mi>u</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0516.png\"/> <jats:tex-math>{u_{0}-u^{\\dagger}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we derive convergence of the method for the case when no source conditions are used and the study concludes with numerical examples which validate the theoretical conclusions.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the simplified Levenberg–Marquardt method for nonlinear ill-posed inverse problems in Hilbert spaces for obtaining stable approximations of solutions to the ill-posed nonlinear equations of the form F ( u ) = y {F(u)=y} , where F : 𝒟 ( F ) 𝖴 𝖸 {F:\mathcal{D}(F)\subset\mathsf{U}\to\mathsf{Y}} is a nonlinear operator between Hilbert spaces 𝖴 {\mathsf{U}} and 𝖸 {\mathsf{Y}} . The method is defined as follows: u n + 1 δ = u n δ - ( T 0 T 0 + α n I ) - 1 T 0 ( F ( u n δ ) - y δ ) , u_{n+1}^{\delta}=u_{n}^{\delta}-(T_{0}^{\ast}T_{0}+\alpha_{n}I)^{-1}T_{0}^{% \ast}(F(u_{n}^{\delta})-y^{\delta}), where T 0 = F ( u 0 ) {T_{0}=F^{\prime}(u_{0})} and T 0 = F ( u 0 ) {T_{0}^{\ast}=F^{\prime}(u_{0})^{\ast}} . Here F ( u 0 ) {F^{\prime}(u_{0})} denotes the Frèchet derivative of F at an initial guess u 0 𝒟 ( F ) {u_{0}\in\mathcal{D}(F)} for the exact solution u {u^{\dagger}} , F ( u 0 ) {F^{\prime}(u_{0})^{\ast}} is the adjoint of F ( u 0 ) {F^{\prime}(u_{0})} and { α n } {\{\alpha_{n}\}} is an a priori chosen sequence of non-negative real numbers satisfying suitable properties. We use Morozov-type stopping rule to terminate the iterations. Under suitable non-linearity conditions on operator F, we show convergence of the method and also obtain a convergence rate result under a Hölder-type source condition on the element u 0 - u {u_{0}-u^{\dagger}} . Furthermore, we derive convergence of the method for the case when no source conditions are used and the study concludes with numerical examples which validate the theoretical conclusions.
希尔伯特空间非线性问题算子方程的简化 Levenberg-Marquardt 方法的误差估计
在本文中,我们考虑了希尔伯特空间中非线性失当逆问题的简化 Levenberg-Marquardt 方法,以获得形式为 F ( u ) = y {F(u)=y} 的失当非线性方程的稳定近似解,其中 F : 𝒟 ( F ) ⊂ 𝖴 → 𝖸 {F:\mathcardt =y} 。 其中 F : 𝒟 ( F ) ⊂ 𝖴 → 𝖸 {F:\mathcal{D}(F)\subset\mathsf{U}\tomathsf{Y}} 是希尔伯特空间 𝖴 {\mathsf{U}} 和 𝖸 {\mathsf{Y}} 之间的非线性算子。 .该方法定义如下: u n + 1 δ = u n δ - ( T 0 ∗ T 0 + α n I ) - 1 T 0 ∗ ( F ( u n δ ) - y δ ) 。 , u_{n+1}^{\delta}=u_{n}^{\delta}-(T_{0}^{\ast}T_{0}+\alpha_{n}I)^{-1}T_{0}^{% \ast}(F(u_{n}^{\delta})-y^{\delta}), 其中 T 0 = F ′ ( u 0 ) {T_{0}=F^{\prime}(u_{0})} and T 0 ∗ = F ′ ( u 0 )∗ {T_{0}^{\ast}=F^{\prime}(u_{0})^{\ast}} . .这里 F ′ ( u 0 ) {F^{\prime}(u_{0})} 表示 F 在初始猜测 u 0 ∈ 𝒟 ( F ) {u_{0}\in\mathcal{D}(F)} 的精确解 u † {u^{\dagger}} 时的弗雷谢特导数。 F ′ ( u 0 )∗ {F^{\prime}(u_{0})^{\ast}} 是 F ′ ( u 0 ) {F^{\prime}(u_{0})} 的矢量,{ α n } 是 F ′ ( u 0 ) {F^{\prime}(u_{0})} 的矢量。 {\{α_{n}\}}是一个先验选择的非负实数序列,满足适当的属性。我们使用莫罗佐夫型停止规则来终止迭代。在算子 F 的适当非线性条件下,我们证明了该方法的收敛性,并在元素 u 0 - u † {u_{0}-u^{\dagger}} 的荷尔德型源条件下获得了收敛率结果。 .此外,我们还推导出在不使用源条件的情况下方法的收敛性,研究最后通过数值示例验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信