{"title":"Error estimates for simplified Levenberg–Marquardt method for nonlinear ill-posed operator equations in Hilbert Spaces","authors":"Pallavi Mahale, Ankush Kumar","doi":"10.1515/jiip-2023-0090","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the simplified Levenberg–Marquardt method for nonlinear ill-posed inverse problems in Hilbert spaces for obtaining stable approximations of solutions to the ill-posed nonlinear equations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mi>y</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0323.png\"/> <jats:tex-math>{F(u)=y}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>F</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\"script\">𝒟</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊂</m:mo> <m:mi>𝖴</m:mi> <m:mo>→</m:mo> <m:mi>𝖸</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0325.png\"/> <jats:tex-math>{F:\\mathcal{D}(F)\\subset\\mathsf{U}\\to\\mathsf{Y}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nonlinear operator between Hilbert spaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝖴</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0402.png\"/> <jats:tex-math>{\\mathsf{U}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝖸</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0403.png\"/> <jats:tex-math>{\\mathsf{Y}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The method is defined as follows: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>δ</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>u</m:mi> <m:mi>n</m:mi> <m:mi>δ</m:mi> </m:msubsup> <m:mo>-</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>α</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo></m:mo> <m:mi>I</m:mi> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>u</m:mi> <m:mi>n</m:mi> <m:mi>δ</m:mi> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:msup> <m:mi>y</m:mi> <m:mi>δ</m:mi> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0294.png\"/> <jats:tex-math>u_{n+1}^{\\delta}=u_{n}^{\\delta}-(T_{0}^{\\ast}T_{0}+\\alpha_{n}I)^{-1}T_{0}^{% \\ast}(F(u_{n}^{\\delta})-y^{\\delta}),</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0341.png\"/> <jats:tex-math>{T_{0}=F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mn>0</m:mn> <m:mo>∗</m:mo> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0343.png\"/> <jats:tex-math>{T_{0}^{\\ast}=F^{\\prime}(u_{0})^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0327.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the Frèchet derivative of <jats:italic>F</jats:italic> at an initial guess <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"script\">𝒟</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0518.png\"/> <jats:tex-math>{u_{0}\\in\\mathcal{D}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exact solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>u</m:mi> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0512.png\"/> <jats:tex-math>{u^{\\dagger}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0326.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the adjoint of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>F</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0327.png\"/> <jats:tex-math>{F^{\\prime}(u_{0})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0429.png\"/> <jats:tex-math>{\\{\\alpha_{n}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an a priori chosen sequence of non-negative real numbers satisfying suitable properties. We use Morozov-type stopping rule to terminate the iterations. Under suitable non-linearity conditions on operator <jats:italic>F</jats:italic>, we show convergence of the method and also obtain a convergence rate result under a Hölder-type source condition on the element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>-</m:mo> <m:msup> <m:mi>u</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0090_eq_0516.png\"/> <jats:tex-math>{u_{0}-u^{\\dagger}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we derive convergence of the method for the case when no source conditions are used and the study concludes with numerical examples which validate the theoretical conclusions.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the simplified Levenberg–Marquardt method for nonlinear ill-posed inverse problems in Hilbert spaces for obtaining stable approximations of solutions to the ill-posed nonlinear equations of the form F(u)=y{F(u)=y}, where F:𝒟(F)⊂𝖴→𝖸{F:\mathcal{D}(F)\subset\mathsf{U}\to\mathsf{Y}} is a nonlinear operator between Hilbert spaces 𝖴{\mathsf{U}} and 𝖸{\mathsf{Y}}. The method is defined as follows: un+1δ=unδ-(T0∗T0+αnI)-1T0∗(F(unδ)-yδ),u_{n+1}^{\delta}=u_{n}^{\delta}-(T_{0}^{\ast}T_{0}+\alpha_{n}I)^{-1}T_{0}^{% \ast}(F(u_{n}^{\delta})-y^{\delta}), where T0=F′(u0){T_{0}=F^{\prime}(u_{0})} and T0∗=F′(u0)∗{T_{0}^{\ast}=F^{\prime}(u_{0})^{\ast}}. Here F′(u0){F^{\prime}(u_{0})} denotes the Frèchet derivative of F at an initial guess u0∈𝒟(F){u_{0}\in\mathcal{D}(F)} for the exact solution u†{u^{\dagger}}, F′(u0)∗{F^{\prime}(u_{0})^{\ast}} is the adjoint of F′(u0){F^{\prime}(u_{0})} and {αn}{\{\alpha_{n}\}} is an a priori chosen sequence of non-negative real numbers satisfying suitable properties. We use Morozov-type stopping rule to terminate the iterations. Under suitable non-linearity conditions on operator F, we show convergence of the method and also obtain a convergence rate result under a Hölder-type source condition on the element u0-u†{u_{0}-u^{\dagger}}. Furthermore, we derive convergence of the method for the case when no source conditions are used and the study concludes with numerical examples which validate the theoretical conclusions.
在本文中,我们考虑了希尔伯特空间中非线性失当逆问题的简化 Levenberg-Marquardt 方法,以获得形式为 F ( u ) = y {F(u)=y} 的失当非线性方程的稳定近似解,其中 F : 𝒟 ( F ) ⊂ 𝖴 → 𝖸 {F:\mathcardt =y} 。 其中 F : 𝒟 ( F ) ⊂ 𝖴 → 𝖸 {F:\mathcal{D}(F)\subset\mathsf{U}\tomathsf{Y}} 是希尔伯特空间 𝖴 {\mathsf{U}} 和 𝖸 {\mathsf{Y}} 之间的非线性算子。 .该方法定义如下: u n + 1 δ = u n δ - ( T 0 ∗ T 0 + α n I ) - 1 T 0 ∗ ( F ( u n δ ) - y δ ) 。 , u_{n+1}^{\delta}=u_{n}^{\delta}-(T_{0}^{\ast}T_{0}+\alpha_{n}I)^{-1}T_{0}^{% \ast}(F(u_{n}^{\delta})-y^{\delta}), 其中 T 0 = F ′ ( u 0 ) {T_{0}=F^{\prime}(u_{0})} and T 0 ∗ = F ′ ( u 0 )∗ {T_{0}^{\ast}=F^{\prime}(u_{0})^{\ast}} . .这里 F ′ ( u 0 ) {F^{\prime}(u_{0})} 表示 F 在初始猜测 u 0 ∈ 𝒟 ( F ) {u_{0}\in\mathcal{D}(F)} 的精确解 u † {u^{\dagger}} 时的弗雷谢特导数。 F ′ ( u 0 )∗ {F^{\prime}(u_{0})^{\ast}} 是 F ′ ( u 0 ) {F^{\prime}(u_{0})} 的矢量,{ α n } 是 F ′ ( u 0 ) {F^{\prime}(u_{0})} 的矢量。 {\{α_{n}\}}是一个先验选择的非负实数序列,满足适当的属性。我们使用莫罗佐夫型停止规则来终止迭代。在算子 F 的适当非线性条件下,我们证明了该方法的收敛性,并在元素 u 0 - u † {u_{0}-u^{\dagger}} 的荷尔德型源条件下获得了收敛率结果。 .此外,我们还推导出在不使用源条件的情况下方法的收敛性,研究最后通过数值示例验证了理论结论。
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography