Deterministic and Stochastic Frank-Wolfe Recursion on Probability Spaces

Di Yu, Shane G. Henderson, Raghu Pasupathy
{"title":"Deterministic and Stochastic Frank-Wolfe Recursion on Probability Spaces","authors":"Di Yu, Shane G. Henderson, Raghu Pasupathy","doi":"arxiv-2407.00307","DOIUrl":null,"url":null,"abstract":"Motivated by applications in emergency response and experimental design, we\nconsider smooth stochastic optimization problems over probability measures\nsupported on compact subsets of the Euclidean space. With the influence\nfunction as the variational object, we construct a deterministic Frank-Wolfe\n(dFW) recursion for probability spaces, made especially possible by a lemma\nthat identifies a ``closed-form'' solution to the infinite-dimensional\nFrank-Wolfe sub-problem. Each iterate in dFW is expressed as a convex\ncombination of the incumbent iterate and a Dirac measure concentrating on the\nminimum of the influence function at the incumbent iterate. To address common\napplication contexts that have access only to Monte Carlo observations of the\nobjective and influence function, we construct a stochastic Frank-Wolfe (sFW)\nvariation that generates a random sequence of probability measures constructed\nusing minima of increasingly accurate estimates of the influence function. We\ndemonstrate that sFW's optimality gap sequence exhibits $O(k^{-1})$ iteration\ncomplexity almost surely and in expectation for smooth convex objectives, and\n$O(k^{-1/2})$ (in Frank-Wolfe gap) for smooth non-convex objectives.\nFurthermore, we show that an easy-to-implement fixed-step, fixed-sample version\nof (sFW) exhibits exponential convergence to $\\varepsilon$-optimality. We end\nwith a central limit theorem on the observed objective values at the sequence\nof generated random measures. To further intuition, we include several\nillustrative examples with exact influence function calculations.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by applications in emergency response and experimental design, we consider smooth stochastic optimization problems over probability measures supported on compact subsets of the Euclidean space. With the influence function as the variational object, we construct a deterministic Frank-Wolfe (dFW) recursion for probability spaces, made especially possible by a lemma that identifies a ``closed-form'' solution to the infinite-dimensional Frank-Wolfe sub-problem. Each iterate in dFW is expressed as a convex combination of the incumbent iterate and a Dirac measure concentrating on the minimum of the influence function at the incumbent iterate. To address common application contexts that have access only to Monte Carlo observations of the objective and influence function, we construct a stochastic Frank-Wolfe (sFW) variation that generates a random sequence of probability measures constructed using minima of increasingly accurate estimates of the influence function. We demonstrate that sFW's optimality gap sequence exhibits $O(k^{-1})$ iteration complexity almost surely and in expectation for smooth convex objectives, and $O(k^{-1/2})$ (in Frank-Wolfe gap) for smooth non-convex objectives. Furthermore, we show that an easy-to-implement fixed-step, fixed-sample version of (sFW) exhibits exponential convergence to $\varepsilon$-optimality. We end with a central limit theorem on the observed objective values at the sequence of generated random measures. To further intuition, we include several illustrative examples with exact influence function calculations.
概率空间上的确定性和随机性弗兰克-沃尔夫递推
受应急响应和实验设计应用的启发,我们考虑了欧几里得空间紧凑子集上支持的概率度量的平稳随机优化问题。以影响函数作为变分对象,我们构建了概率空间的确定性弗兰克-沃尔夫(dFW)递归,特别是通过一个确定无穷维弗兰克-沃尔夫子问题的 "封闭形式 "解的定理,使之成为可能。dFW 中的每个迭代都表示为现任迭代的凸组合和集中于现任迭代处影响函数最小值的狄拉克度量。为了解决只能获得目标和影响函数的蒙特卡罗观测结果的常见应用问题,我们构建了一种随机弗兰克-沃尔夫(sFW)变量,它能生成一系列随机概率度量,这些概率度量是利用对影响函数越来越精确的估计的最小值构建的。我们证明,对于平滑凸目标,sFW 的最优性差距序列几乎肯定地在期望值上表现出 $O(k^{-1})$ 的迭代复杂性,而对于平滑非凸目标,则表现出 $O(k^{-1/2})$ 的迭代复杂性(在 Frank-Wolfe 差距中)。此外,我们还证明,一个易于实现的固定步长、固定样本版本的 (sFW) 表现出指数级收敛到 $\varepsilon$ 的最优性。最后,我们提出了一个关于在生成的随机度量序列中观察到的目标值的中心极限定理。为了进一步加深直觉,我们列举了几个具有精确影响函数计算的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信