Y. Sreenivasa Rao, Vikas Srivastava, Tapaswini Mohanty, Sumit Kumar Debnath
{"title":"Designing quantum-secure attribute-based encryption","authors":"Y. Sreenivasa Rao, Vikas Srivastava, Tapaswini Mohanty, Sumit Kumar Debnath","doi":"10.1007/s10586-024-04546-9","DOIUrl":null,"url":null,"abstract":"<p>In the last couple of decades, Attribute-Based Encryption (ABE) has been a promising encryption technique to realize fine-grained access control over encrypted data. ABE has appealing functionalities such as (i) access control through encryption and (ii) encrypting a message to a group of recipients without knowing their actual identities. However, the existing state-of-the-art ABEs are based on number-theoretic hardness assumptions. These designs are not secure against attacks by quantum algorithms such as Shor algorithm. Moreover, existing Post-Quantum Cryptography (PQC)-based ABEs fail to provide long-term security. Therefore, there is a need for quantum secure ABE that can withstand quantum attacks and provides long-term security. In this work, for the first time, we introduce the notion of a quantum-secure ABE (<span>qABE</span>) framework that preserves the classical ABE’s functionalities and resists quantum attacks. Next, we provide a generic construction of <span>qABE</span> which is able to transform any existing ABE into <span>qABE</span> scheme. Thereafter, we illustrate a concrete construction of a quantum ABE based on our generic transformation <span>qABE</span> and the Waters’ ciphertext-policy ABE scheme.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04546-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last couple of decades, Attribute-Based Encryption (ABE) has been a promising encryption technique to realize fine-grained access control over encrypted data. ABE has appealing functionalities such as (i) access control through encryption and (ii) encrypting a message to a group of recipients without knowing their actual identities. However, the existing state-of-the-art ABEs are based on number-theoretic hardness assumptions. These designs are not secure against attacks by quantum algorithms such as Shor algorithm. Moreover, existing Post-Quantum Cryptography (PQC)-based ABEs fail to provide long-term security. Therefore, there is a need for quantum secure ABE that can withstand quantum attacks and provides long-term security. In this work, for the first time, we introduce the notion of a quantum-secure ABE (qABE) framework that preserves the classical ABE’s functionalities and resists quantum attacks. Next, we provide a generic construction of qABE which is able to transform any existing ABE into qABE scheme. Thereafter, we illustrate a concrete construction of a quantum ABE based on our generic transformation qABE and the Waters’ ciphertext-policy ABE scheme.