Inside the Working Mechanism of Meta-generalized Gradient Density Functional Approximations: The Example of Quantum Spin-Hall Insulator 1T`-WTe2

Li Yin, Hong Tang, Adrienn Ruzsinszky
{"title":"Inside the Working Mechanism of Meta-generalized Gradient Density Functional Approximations: The Example of Quantum Spin-Hall Insulator 1T`-WTe2","authors":"Li Yin, Hong Tang, Adrienn Ruzsinszky","doi":"arxiv-2406.12124","DOIUrl":null,"url":null,"abstract":"Quantum spin Hall (QSH) insulators have attracted intensive experimental and\ntheoretical studies due to their beneficial applications in spintronic devices.\nDensity functional theory (DFT) meets challenges when describing the electronic\nstructure of QSH materials. Only the Heyd-Scuseria-Ernzerhof (HSE06) with\nspin-orbit coupling (SOC) is effective in revealing the band opening in the\ntypical QSH 1T`-WTe2, but with increased computational demands. Here, using\nDFT, Wannier function simulations, the screened hybrid HSE06 functional, and\nfirst-principles-based many body perturbation theory GW, we investigate the\nsensitive electronic structure in monolayer 1T`-WTe2, with advanced\nmeta-generalized gradient (meta-GGA) density functional approximations. The\nsuccess of the recent SCAN and r2SCAN meta-GGAs left their predecessor meta-GGA\nmade very simple (MVS) ignored by the scientific community. Largely unnoticed\nwere the increased band gaps of MVS compared to any semilocal approximation\nincluding SCAN. We find that the non-empirical MVS approximation yields a\npositive fundamental band gap, without any help from exact exchange, Hubbard U,\nor SOC correction. We explain the success of the meta-GGA MVS for the band gap\nin 1T`-WTe2 by presenting two working mechanisms in meta-GGA approximations.\nBesides, we point out the difficulty of using G0W0 for 1T`-WTe2. Although the\nsingle shot GW correction with an MVS reference yields a smaller band gap than\nGW with PBE, the G0W0@MVS is still not suitable for simulating 1T`-WTe2, due to\nits negative band gap. These DFT and beyond DFT results highlight the\nimportance of meta-GGAs and novel construction schemes with enhanced kinetic\nenergy density dependence. The MVS approximation re-appears as an appealing\nalternative for accurately describing 1T`-WTe2, paving an efficient way for\nexploring other two-dimensional QSH materials in high-throughput calculations.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum spin Hall (QSH) insulators have attracted intensive experimental and theoretical studies due to their beneficial applications in spintronic devices. Density functional theory (DFT) meets challenges when describing the electronic structure of QSH materials. Only the Heyd-Scuseria-Ernzerhof (HSE06) with spin-orbit coupling (SOC) is effective in revealing the band opening in the typical QSH 1T`-WTe2, but with increased computational demands. Here, using DFT, Wannier function simulations, the screened hybrid HSE06 functional, and first-principles-based many body perturbation theory GW, we investigate the sensitive electronic structure in monolayer 1T`-WTe2, with advanced meta-generalized gradient (meta-GGA) density functional approximations. The success of the recent SCAN and r2SCAN meta-GGAs left their predecessor meta-GGA made very simple (MVS) ignored by the scientific community. Largely unnoticed were the increased band gaps of MVS compared to any semilocal approximation including SCAN. We find that the non-empirical MVS approximation yields a positive fundamental band gap, without any help from exact exchange, Hubbard U, or SOC correction. We explain the success of the meta-GGA MVS for the band gap in 1T`-WTe2 by presenting two working mechanisms in meta-GGA approximations. Besides, we point out the difficulty of using G0W0 for 1T`-WTe2. Although the single shot GW correction with an MVS reference yields a smaller band gap than GW with PBE, the G0W0@MVS is still not suitable for simulating 1T`-WTe2, due to its negative band gap. These DFT and beyond DFT results highlight the importance of meta-GGAs and novel construction schemes with enhanced kinetic energy density dependence. The MVS approximation re-appears as an appealing alternative for accurately describing 1T`-WTe2, paving an efficient way for exploring other two-dimensional QSH materials in high-throughput calculations.
元广义梯度密度函数近似的工作机制内幕:以量子自旋荷尔绝缘体 1T`-WTe2 为例
量子自旋霍尔(QSH)绝缘体因其在自旋电子器件中的有益应用而吸引了大量的实验和理论研究。密度泛函理论(DFT)在描述 QSH 材料的电子结构时遇到了挑战。在描述 QSH 材料的电子结构时,密度泛函理论(DFT)遇到了挑战。只有具有自旋轨道耦合(SOC)的 Heyd-Scuseria-Ernzerhof (HSE06) 才能有效地揭示典型 QSH 1T`-WTe2 的带开口,但计算要求也随之提高。在这里,我们利用先进的元广义梯度(meta-GGA)密度泛函近似,使用DFT、万尼函数模拟、筛选混合HSE06函数和基于第一性原理的多体扰动理论GW,研究了单层1T`-WTe2中的敏感电子结构。最近 SCAN 和 r2SCAN 元 GGA 的成功使其前身元 GGA 非常简单(MVS)被科学界所忽视。与包括 SCAN 在内的任何半局部近似方法相比,MVS 的带隙增大了,而这一点基本上没有引起人们的注意。我们发现,非经验的 MVS 近似不需要精确交换、哈伯德 U 或 SOC 修正的帮助,就能产生正的基本带隙。此外,我们还指出了在 1T`-WTe2 中使用 G0W0 的困难。此外,我们还指出了将 G0W0 用于 1T`-WTe2 的困难之处。虽然以 MVS 为基准的单次 GW 校正得到的带隙小于以 PBE 为基准的 GW,但 G0W0@MVS 仍然不适合模拟 1T`-WTe2,因为它的带隙为负。这些 DFT 和超越 DFT 的结果凸显了元 GGA 和具有增强动能密度依赖性的新型构造方案的重要性。MVS 近似再次成为精确描述 1T`-WTe2 的一种有吸引力的替代方法,为在高通量计算中探索其他二维 QSH 材料铺平了一条有效的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信