Moduli Spaces of Quadratic Maps: Arithmetic and Geometry

Pub Date : 2024-06-11 DOI:10.1093/imrn/rnae126
Rohini Ramadas
{"title":"Moduli Spaces of Quadratic Maps: Arithmetic and Geometry","authors":"Rohini Ramadas","doi":"10.1093/imrn/rnae126","DOIUrl":null,"url":null,"abstract":"We establish an implication between two long-standing open problems in complex dynamics. The roots of the $n$th Gleason polynomial $G_{n}\\in{\\mathbb{Q}}[c]$ comprise the $0$-dimensional moduli space of quadratic polynomials with an $n$-periodic critical point. $\\operatorname{Per}_{n}(0)$ is the $1$-dimensional moduli space of quadratic rational maps on ${\\mathbb{P}}^{1}$ with an $n$-periodic critical point. We show that if $G_{n}$ is irreducible over ${\\mathbb{Q}}$, then $\\operatorname{Per}_{n}(0)$ is irreducible over ${\\mathbb{C}}$. To do this, we exhibit a ${\\mathbb{Q}}$-rational smooth point on a projective completion of $\\operatorname{Per}_{n}(0)$, using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large $n$, $\\operatorname{Per}_{n}(0)$ itself has no ${\\mathbb{Q}}$-rational points.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish an implication between two long-standing open problems in complex dynamics. The roots of the $n$th Gleason polynomial $G_{n}\in{\mathbb{Q}}[c]$ comprise the $0$-dimensional moduli space of quadratic polynomials with an $n$-periodic critical point. $\operatorname{Per}_{n}(0)$ is the $1$-dimensional moduli space of quadratic rational maps on ${\mathbb{P}}^{1}$ with an $n$-periodic critical point. We show that if $G_{n}$ is irreducible over ${\mathbb{Q}}$, then $\operatorname{Per}_{n}(0)$ is irreducible over ${\mathbb{C}}$. To do this, we exhibit a ${\mathbb{Q}}$-rational smooth point on a projective completion of $\operatorname{Per}_{n}(0)$, using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large $n$, $\operatorname{Per}_{n}(0)$ itself has no ${\mathbb{Q}}$-rational points.
分享
查看原文
二次映射的模空间:算术与几何
我们在复杂动力学中两个长期悬而未决的问题之间建立了联系。$n$th Gleason 多项式 $G_{n}\in\{mathbb{Q}}[c]$ 的根组成了具有 $n$ 周期临界点的二次多项式的 $0$ 维模态空间。$operatorname{Per}_{n}(0)$是${mathbb{P}}^{1}$上具有$n$周期临界点的二次有理映射的$1$维模量空间。我们证明,如果 $G_{n}$ 在 ${mathbb{Q}}$ 上是不可还原的,那么 $operatorname{Per}_{n}(0)$ 在 ${mathbb{C}}$ 上也是不可还原的。为此,我们利用赫尔维茨空间的可容许盖完备性,在 $\operatorname{Per}_{n}(0)$ 的投影完备性上展示了一个 $\mathbb{Q}}$ 理性光滑点。相反,算术动力学中的均匀有界猜想意味着,对于足够大的 $n$,$operatorname{Per}_{n}(0)$ 本身没有 ${mathbb{Q}}$ 理性点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信