Adam Kanigowski, Mariusz Lemańczyk, Florian K Richter, Joni Teräväinen
{"title":"On the Local Fourier Uniformity Problem for Small Sets","authors":"Adam Kanigowski, Mariusz Lemańczyk, Florian K Richter, Joni Teräväinen","doi":"10.1093/imrn/rnae134","DOIUrl":null,"url":null,"abstract":"We consider vanishing properties of exponential sums of the Liouville function $\\boldsymbol{\\lambda }$ of the form $$ \\begin{align*} & \\lim_{H\\to\\infty}\\limsup_{X\\to\\infty}\\frac{1}{\\log X}\\sum_{m\\leq X}\\frac{1}{m}\\sup_{\\alpha\\in C}\\bigg|\\frac{1}{H}\\sum_{h\\leq H}\\boldsymbol{\\lambda}(m+h)e^{2\\pi ih\\alpha}\\bigg|=0, \\end{align*} $$ where $C\\subset{{\\mathbb{T}}}$. The case $C={{\\mathbb{T}}}$ corresponds to the local $1$-Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $C\\subset{{\\mathbb{T}}}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $C$ with non-empty interior is equivalent to the $C={{\\mathbb{T}}}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $e^{2\\pi ih\\alpha }$ is replaced by a polynomial phase $e^{2\\pi ih^{t}\\alpha }$ for $t\\geq 2$ then the statement remains true for any set $C$ of upper box-counting dimension $< 1/t$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $t$-step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1$-Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider vanishing properties of exponential sums of the Liouville function $\boldsymbol{\lambda }$ of the form $$ \begin{align*} & \lim_{H\to\infty}\limsup_{X\to\infty}\frac{1}{\log X}\sum_{m\leq X}\frac{1}{m}\sup_{\alpha\in C}\bigg|\frac{1}{H}\sum_{h\leq H}\boldsymbol{\lambda}(m+h)e^{2\pi ih\alpha}\bigg|=0, \end{align*} $$ where $C\subset{{\mathbb{T}}}$. The case $C={{\mathbb{T}}}$ corresponds to the local $1$-Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $C\subset{{\mathbb{T}}}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $C$ with non-empty interior is equivalent to the $C={{\mathbb{T}}}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $e^{2\pi ih\alpha }$ is replaced by a polynomial phase $e^{2\pi ih^{t}\alpha }$ for $t\geq 2$ then the statement remains true for any set $C$ of upper box-counting dimension $< 1/t$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $t$-step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1$-Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.