{"title":"Re-initialization-Free Level Set Method via Molecular Beam Epitaxy Equation Regularization for Image Segmentation","authors":"Fanghui Song, Jiebao Sun, Shengzhu Shi, Zhichang Guo, Dazhi Zhang","doi":"10.1007/s10851-024-01205-x","DOIUrl":null,"url":null,"abstract":"<p>Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function. Thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve and keep the segmentation results independent of the initial curve selection. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design a scalar auxiliary variable scheme, which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, preserve segmentation details and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01205-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function. Thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve and keep the segmentation results independent of the initial curve selection. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design a scalar auxiliary variable scheme, which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, preserve segmentation details and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.