{"title":"Non-quadratic Euclidean Complete Affine Maximal Type Hypersurfaces for $$\\theta \\in (0,(N-1)/N]$$","authors":"Shi-Zhong Du","doi":"10.1007/s12220-024-01678-7","DOIUrl":null,"url":null,"abstract":"<p>Bernstein problem for affine maximal type equation </p><span>$$\\begin{aligned} u^{ij}D_{ij}w=0, \\ \\ w\\equiv [\\det D^2u]^{-\\theta },\\ \\ \\forall x\\in \\Omega \\subset {\\mathbb {R}}^N \\end{aligned}$$</span>(0.1)<p>has been a core problem in affine geometry. A conjecture (Version I in Section 1) initially proposed by Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) for entire graph with <span>\\(N=2, \\theta =3/4\\)</span> and then was strengthened by Trudinger-Wang (Invent. Math., <b>140</b>, 2000, 399-422) to its full generality (Version II), which asserts that any Euclidean complete, affine maximal, locally uniformly convex <span>\\(C^4\\)</span>-hypersurface in <span>\\({\\mathbb {R}}^{N+1}\\)</span> must be an elliptic paraboloid. At the same time, the Chern’s conjecture was solved completely by Trudinger-Wang in dimension two. Soon after, the Affine Bernstein Conjecture (Version III) for affine complete affine maximal hypersurfaces was also shown by Trudinger-Wang in (Invent. Math., <b>150</b>, 2002, 45-60). Thereafter, the Bernstein problem has morphed into a broader conjectures for any dimension <span>\\(N\\ge 2\\)</span> and any positive constant <span>\\(\\theta >0\\)</span>. The Bernstein theorem of Trudinger-Wang was then generalized by Li-Jia (Results Math., <b>56</b> 2009, 109-139) to <span>\\(N=2, \\theta \\in (3/4,1]\\)</span> (see also Zhou (Calc. Var. PDEs., <b>43</b> 2012, 25-44) for a different proof). In the past twenty years, much effort was done toward higher dimensional issues but not really successful yet, even for the case of dimension <span>\\(N=3\\)</span>. Recently, counter examples were found in (J. Differential Equations, <b>269</b> (2020), 7429-7469), toward the Full Bernstein Problem IV for <span>\\(N\\ge 3,\\theta \\in (1/2,(N-1)/N)\\)</span> and using a much more complicated argument. In this paper, we will construct explicitly various new Euclidean complete affine maximal type hypersurfaces which are not elliptic paraboloid for the improved range </p><span>$$\\begin{aligned} N\\ge 2, \\ \\ \\theta \\in (0,(N-1)/N]. \\end{aligned}$$</span>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01678-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bernstein problem for affine maximal type equation
has been a core problem in affine geometry. A conjecture (Version I in Section 1) initially proposed by Chern (Proc. Japan-United States Sem., Tokyo, 1977, 17-30) for entire graph with \(N=2, \theta =3/4\) and then was strengthened by Trudinger-Wang (Invent. Math., 140, 2000, 399-422) to its full generality (Version II), which asserts that any Euclidean complete, affine maximal, locally uniformly convex \(C^4\)-hypersurface in \({\mathbb {R}}^{N+1}\) must be an elliptic paraboloid. At the same time, the Chern’s conjecture was solved completely by Trudinger-Wang in dimension two. Soon after, the Affine Bernstein Conjecture (Version III) for affine complete affine maximal hypersurfaces was also shown by Trudinger-Wang in (Invent. Math., 150, 2002, 45-60). Thereafter, the Bernstein problem has morphed into a broader conjectures for any dimension \(N\ge 2\) and any positive constant \(\theta >0\). The Bernstein theorem of Trudinger-Wang was then generalized by Li-Jia (Results Math., 56 2009, 109-139) to \(N=2, \theta \in (3/4,1]\) (see also Zhou (Calc. Var. PDEs., 43 2012, 25-44) for a different proof). In the past twenty years, much effort was done toward higher dimensional issues but not really successful yet, even for the case of dimension \(N=3\). Recently, counter examples were found in (J. Differential Equations, 269 (2020), 7429-7469), toward the Full Bernstein Problem IV for \(N\ge 3,\theta \in (1/2,(N-1)/N)\) and using a much more complicated argument. In this paper, we will construct explicitly various new Euclidean complete affine maximal type hypersurfaces which are not elliptic paraboloid for the improved range