A General Integral Identity with Applications to a Reverse Serrin Problem

Rolando Magnanini, Riccardo Molinarolo, Giorgio Poggesi
{"title":"A General Integral Identity with Applications to a Reverse Serrin Problem","authors":"Rolando Magnanini, Riccardo Molinarolo, Giorgio Poggesi","doi":"10.1007/s12220-024-01693-8","DOIUrl":null,"url":null,"abstract":"<p>We prove a new general differential identity and an associated integral identity, which entails a pair of solutions of the Poisson equation with constant source term. This generalizes a formula that the first and third authors previously proved and used to obtain quantitative estimates of spherical symmetry for the Serrin overdetermined boundary value problem. As an application, we prove a quantitative symmetry result for the <i>reverse Serrin problem</i>, which we introduce for the first time in this paper. In passing, we obtain a rigidity result for solutions of the aforementioned Poisson equation subject to a constant Neumann condition.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01693-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a new general differential identity and an associated integral identity, which entails a pair of solutions of the Poisson equation with constant source term. This generalizes a formula that the first and third authors previously proved and used to obtain quantitative estimates of spherical symmetry for the Serrin overdetermined boundary value problem. As an application, we prove a quantitative symmetry result for the reverse Serrin problem, which we introduce for the first time in this paper. In passing, we obtain a rigidity result for solutions of the aforementioned Poisson equation subject to a constant Neumann condition.

通用积分特性及其在反向塞林问题中的应用
我们证明了一个新的一般微分特性和相关积分特性,它包含一对具有常数源项的泊松方程解。这概括了第一作者和第三作者先前证明并用于获得塞林超定边界值问题球面对称性定量估计的公式。作为应用,我们证明了反向 Serrin 问题的定量对称性结果,这也是我们在本文中首次提出的。顺带一提,我们还获得了上述泊松方程在恒定诺伊曼条件下的解的刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信