Hardy-Littlewood Type Theorems and a Hopf Type Lemma

Shaolin Chen, Hidetaka Hamada, Dou Xie
{"title":"Hardy-Littlewood Type Theorems and a Hopf Type Lemma","authors":"Shaolin Chen, Hidetaka Hamada, Dou Xie","doi":"10.1007/s12220-024-01717-3","DOIUrl":null,"url":null,"abstract":"<p>The main aim of this paper is to investigate Hardy-Littlewood type Theorems and a Hopf type lemma on functions induced by a differential operator. We first prove more general Hardy-Littlewood type theorems for the Dirichlet solution of a differential operator which depends on <span>\\(\\alpha \\in (-1,\\infty )\\)</span> over the unit ball <span>\\(\\mathbb {B}^n\\)</span> of <span>\\(\\mathbb {R}^n\\)</span> with <span>\\(n\\ge 2\\)</span>, related to the Lipschitz type space defined by a majorant which satisfies some assumption. We find that the case <span>\\(\\alpha \\in (0,\\infty )\\)</span> is completely different from the case <span>\\(\\alpha =0\\)</span> due to Dyakonov (Adv. Math. 187 (2004), 146–172). Then a more general Hopf type lemma for the Dirichlet solution of a differential operator will also be established in the case <span>\\(\\alpha &gt;n-2\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01717-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this paper is to investigate Hardy-Littlewood type Theorems and a Hopf type lemma on functions induced by a differential operator. We first prove more general Hardy-Littlewood type theorems for the Dirichlet solution of a differential operator which depends on \(\alpha \in (-1,\infty )\) over the unit ball \(\mathbb {B}^n\) of \(\mathbb {R}^n\) with \(n\ge 2\), related to the Lipschitz type space defined by a majorant which satisfies some assumption. We find that the case \(\alpha \in (0,\infty )\) is completely different from the case \(\alpha =0\) due to Dyakonov (Adv. Math. 187 (2004), 146–172). Then a more general Hopf type lemma for the Dirichlet solution of a differential operator will also be established in the case \(\alpha >n-2\).

哈代-利特尔伍德类型定理和霍普夫类型定理
本文的主要目的是研究由微分算子诱导的函数的哈代-利特尔伍德类型定理和霍普夫类型 Lemma。我们首先证明了微分算子的 Dirichlet 解的更一般的 Hardy-Littlewood 型定理,该微分算子依赖于 \(\alpha \in (-1,\infty )\) over the unit ball \(\mathbb {B}^n\) of \(\mathbb {R}^n\) with \(n\ge 2\), 与满足某些假设的 majorant 定义的 Lipschitz 型空间有关。我们发现(α 在(0,\infty )中)的情况完全不同于迪亚科诺夫(Adv.187 (2004), 146-172).那么在 \(\alpha >n-2\) 的情况下,一个微分算子的 Dirichlet 解的更一般的 Hopf 型 Lemma 也将成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信