The Truncated Moment Problem on Reducible Cubic Curves I: Parabolic and Circular Type Relations

Pub Date : 2024-06-08 DOI:10.1007/s11785-024-01554-w
Seonguk Yoo, Aljaž Zalar
{"title":"The Truncated Moment Problem on Reducible Cubic Curves I: Parabolic and Circular Type Relations","authors":"Seonguk Yoo, Aljaž Zalar","doi":"10.1007/s11785-024-01554-w","DOIUrl":null,"url":null,"abstract":"<p>In this article we study the bivariate truncated moment problem (TMP) of degree 2<i>k</i> on reducible cubic curves. First we show that every such TMP is equivalent after applying an affine linear transformation to one of 8 canonical forms of the curve. The case of the union of three parallel lines was solved in Zalar (Linear Algebra Appl 649:186–239, 2022. https://doi.org/10.1016/j.laa.2022.05.008), while the degree 6 cases in Yoo (Integral Equ Oper Theory 88:45–63, 2017). Second we characterize in terms of concrete numerical conditions the existence of the solution to the TMP on two of the remaining cases concretely, i.e., a union of a line and a circle <span>\\(y(ay+x^2+y^2)=0, a\\in {\\mathbb {R}}{\\setminus } \\{0\\}\\)</span>, and a union of a line and a parabola <span>\\(y(x-y^2)=0\\)</span>. In both cases we also determine the number of atoms in a minimal representing measure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01554-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study the bivariate truncated moment problem (TMP) of degree 2k on reducible cubic curves. First we show that every such TMP is equivalent after applying an affine linear transformation to one of 8 canonical forms of the curve. The case of the union of three parallel lines was solved in Zalar (Linear Algebra Appl 649:186–239, 2022. https://doi.org/10.1016/j.laa.2022.05.008), while the degree 6 cases in Yoo (Integral Equ Oper Theory 88:45–63, 2017). Second we characterize in terms of concrete numerical conditions the existence of the solution to the TMP on two of the remaining cases concretely, i.e., a union of a line and a circle \(y(ay+x^2+y^2)=0, a\in {\mathbb {R}}{\setminus } \{0\}\), and a union of a line and a parabola \(y(x-y^2)=0\). In both cases we also determine the number of atoms in a minimal representing measure.

Abstract Image

分享
查看原文
可还原立方曲线上的截断矩问题 I:抛物线与圆型关系
本文研究了可还原立方曲线上 2k 阶的双变量截矩问题(TMP)。首先,我们证明了在对曲线的 8 个典型形式之一进行仿射线性变换后,每个 TMP 都是等价的。Zalar (Linear Algebra Appl 649:186-239, 2022. https://doi.org/10.1016/j.laa.2022.05.008) 解决了三条平行线联合的情况,Yoo (Integral Equ Oper Theory 88:45-63, 2017) 解决了6度的情况。其次,我们用具体的数值条件来描述剩余两种情况下 TMP 解的具体存在性,即直线与圆的结合 \(y(ay+x^2+y^2)=0, a\in {\mathbb {R}}{\setminus })\),以及直线与抛物线的结合(y(x-y^2)=0)。在这两种情况下,我们还可以确定最小表示度量中的原子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信