{"title":"Distributed swarm control for multi-robot systems inspired by shepherding behaviors","authors":"GuiBin Sun, HaiBo Gu, JinHu Lü","doi":"10.1007/s11431-023-2651-6","DOIUrl":null,"url":null,"abstract":"<p>Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes, resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an integrated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control scheme.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2651-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes, resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an integrated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control scheme.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.