{"title":"Image attention transformer network for indoor 3D object detection","authors":"KeYan Ren, Tong Yan, ZhaoXin Hu, HongGui Han, YunLu Zhang","doi":"10.1007/s11431-023-2552-x","DOIUrl":null,"url":null,"abstract":"<p>Point clouds and RGB images are both critical data for 3D object detection. While recent multi-modal methods combine them directly and show remarkable performances, they ignore the distinct forms of these two types of data. For mitigating the influence of this intrinsic difference on performance, we propose a novel but effective fusion model named LI-Attention model, which takes both RGB features and point cloud features into consideration and assigns a weight to each RGB feature by attention mechanism. Furthermore, based on the LI-Attention model, we propose a 3D object detection method called image attention transformer network (IAT-Net) specialized for indoor RGB-D scene. Compared with previous work on multi-modal detection, IAT-Net fuses elaborate RGB features from 2D detection results with point cloud features in attention mechanism, meanwhile generates and refines 3D detection results with transformer model. Extensive experiments demonstrate that our approach outperforms state-of-the-art performance on two widely used benchmarks of indoor 3D object detection, SUN RGB-D and NYU Depth V2, while ablation studies have been provided to analyze the effect of each module. And the source code for the proposed IAT-Net is publicly available at https://github.com/wisper181/IAT-Net.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2552-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Point clouds and RGB images are both critical data for 3D object detection. While recent multi-modal methods combine them directly and show remarkable performances, they ignore the distinct forms of these two types of data. For mitigating the influence of this intrinsic difference on performance, we propose a novel but effective fusion model named LI-Attention model, which takes both RGB features and point cloud features into consideration and assigns a weight to each RGB feature by attention mechanism. Furthermore, based on the LI-Attention model, we propose a 3D object detection method called image attention transformer network (IAT-Net) specialized for indoor RGB-D scene. Compared with previous work on multi-modal detection, IAT-Net fuses elaborate RGB features from 2D detection results with point cloud features in attention mechanism, meanwhile generates and refines 3D detection results with transformer model. Extensive experiments demonstrate that our approach outperforms state-of-the-art performance on two widely used benchmarks of indoor 3D object detection, SUN RGB-D and NYU Depth V2, while ablation studies have been provided to analyze the effect of each module. And the source code for the proposed IAT-Net is publicly available at https://github.com/wisper181/IAT-Net.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.