$$\mathfrak {cP}$$ -Baer Polynomial Extensions

IF 0.7 4区 数学 Q2 MATHEMATICS
Nasibeh Aramideh, Ahmad Moussavi
{"title":"$$\\mathfrak {cP}$$ -Baer Polynomial Extensions","authors":"Nasibeh Aramideh, Ahmad Moussavi","doi":"10.1007/s41980-024-00898-5","DOIUrl":null,"url":null,"abstract":"<p>A ring <i>R</i> is called right <span>\\(\\mathfrak {cP}\\)</span>-Baer if the right annihilator of a cyclic projective right <i>R</i>-module in <i>R</i> is generated by an idempotent. These rings are a generalization of the right p.q.-Baer rings and abelian rings. Following Birkenmeier and Heider (Commun Algebra 47(3):1348–1375, 2019 https://doi.org/10.1080/00927872.2018.1506462), we investigate the transfer of the <span>\\(\\mathfrak {cP}\\)</span>-Baer property between a ring <i>R</i> and many polynomial extensions (including skew polynomials, skew Laurent polynomials, skew power series, skew inverse Laurent series), and monoid rings. As a consequence, we answer a question posed by Birkenmeier and Heider (2019).</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00898-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A ring R is called right \(\mathfrak {cP}\)-Baer if the right annihilator of a cyclic projective right R-module in R is generated by an idempotent. These rings are a generalization of the right p.q.-Baer rings and abelian rings. Following Birkenmeier and Heider (Commun Algebra 47(3):1348–1375, 2019 https://doi.org/10.1080/00927872.2018.1506462), we investigate the transfer of the \(\mathfrak {cP}\)-Baer property between a ring R and many polynomial extensions (including skew polynomials, skew Laurent polynomials, skew power series, skew inverse Laurent series), and monoid rings. As a consequence, we answer a question posed by Birkenmeier and Heider (2019).

Abstract Image

$$mathfrak {cP}$$ -Baer 多项式扩展
如果 R 中循环投影右 R 模块的右湮子是由一个幂等子生成的,那么这个环 R 就叫做右 \(\mathfrak {cP}\)-Baer 环。这些环是右 p.q.-Baer 环和无常环的一般化。继 Birkenmeier 和 Heider (Commun Algebra 47(3):1348-1375, 2019 https://doi.org/10.1080/00927872.2018.1506462)之后,我们研究了环 R 和许多多项式扩展(包括偏斜多项式、偏斜劳伦特多项式、偏斜幂级数、偏斜逆劳伦特数列)以及单元环之间的 \(\mathfrak {cP}\)-Baer 性质的转移。因此,我们回答了 Birkenmeier 和 Heider(2019)提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信