Irreducible modules over the Lie conformal algebra $${\mathfrak {B}}(\alpha ,\beta ,p)$$

IF 0.7 2区 数学 Q2 MATHEMATICS
Haibo Chen, Yanyong Hong, Yucai Su
{"title":"Irreducible modules over the Lie conformal algebra $${\\mathfrak {B}}(\\alpha ,\\beta ,p)$$","authors":"Haibo Chen, Yanyong Hong, Yucai Su","doi":"10.1007/s13348-024-00448-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a class of infinite Lie conformal algebras <span>\\({\\mathfrak {B}}(\\alpha ,\\beta ,p)\\)</span>, which are the semi-direct sums of Block type Lie conformal algebra <span>\\({\\mathfrak {B}}(p)\\)</span> and its non-trivial conformal modules of <span>\\({\\mathbb {Z}}\\)</span>-graded free intermediate series. The annihilation algebras are a class of infinite-dimensional Lie algebras, which include a lot of interesting subalgebras: Virasoro algebra, Block type Lie algebra, twisted Heisenberg–Virasoro algebra and so on. We give a complete classification of all finite non-trivial irreducible conformal modules of <span>\\({\\mathfrak {B}}(\\alpha ,\\beta ,p)\\)</span> for <span>\\(\\alpha ,\\beta \\in {\\mathbb {C}}, p\\in {\\mathbb {C}}^*\\)</span>. As an application, the classifications of finite irreducible conformal modules over a series of finite Lie conformal algebras <span>\\({\\mathfrak {b}}(n)\\)</span> for <span>\\(n\\ge 1\\)</span> are given.\n</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00448-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a class of infinite Lie conformal algebras \({\mathfrak {B}}(\alpha ,\beta ,p)\), which are the semi-direct sums of Block type Lie conformal algebra \({\mathfrak {B}}(p)\) and its non-trivial conformal modules of \({\mathbb {Z}}\)-graded free intermediate series. The annihilation algebras are a class of infinite-dimensional Lie algebras, which include a lot of interesting subalgebras: Virasoro algebra, Block type Lie algebra, twisted Heisenberg–Virasoro algebra and so on. We give a complete classification of all finite non-trivial irreducible conformal modules of \({\mathfrak {B}}(\alpha ,\beta ,p)\) for \(\alpha ,\beta \in {\mathbb {C}}, p\in {\mathbb {C}}^*\). As an application, the classifications of finite irreducible conformal modules over a series of finite Lie conformal algebras \({\mathfrak {b}}(n)\) for \(n\ge 1\) are given.

列共形代数 $${mathfrak {B}}(\alpha ,\beta ,p)$$ 上的不可还原模块
在本文中,我们介绍了一类无穷Lie共形代数(\({\mathfrak {B}}(\alpha ,\beta ,p)\),它们是布洛克型Lie共形代数\({\mathfrak {B}}(p)\) 及其非难共形模的\({\mathbb {Z}}\)级自由中间数列的半直角和。湮灭代数是一类无穷维李代数,其中包括许多有趣的子代数:维拉索罗代数、布洛克型李代数、扭曲海森堡-维拉索罗代数等等。我们给出了对于 \(\alpha ,\beta \in {\mathbb {C}}, p\in {\mathbb {C}}^*\) 的 \({\mathfrak {B}}(\alpha ,\beta ,p)\)的所有有限非难共形模块的完整分类。作为应用,给出了一系列有限Lie共形布尔上的有限不可还原共形模块的分类({\mathfrak {b}}(n)\) for \(n\ge 1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信