Projectively induced Kähler cones over regular Sasakian manifolds

Pub Date : 2024-06-24 DOI:10.1007/s10711-024-00935-x
Stefano Marini, Nicoletta Tardini, Michela Zedda
{"title":"Projectively induced Kähler cones over regular Sasakian manifolds","authors":"Stefano Marini, Nicoletta Tardini, Michela Zedda","doi":"10.1007/s10711-024-00935-x","DOIUrl":null,"url":null,"abstract":"<p>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to <span>\\(\\mathcal D_a\\)</span>—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00935-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to \(\mathcal D_a\)—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.

分享
查看原文
规则萨萨基流形上的投影诱导凯勒锥
受Loi等人(Math Zeit 290:599-613,2018)中一个猜想的启发,我们证明了规则完整萨萨基流形上的凯勒锥是里奇平坦的,并且只有当它是平坦的时候,它才是投影诱导的。我们还得到,根据同调变换,同质紧凑萨萨基流形上的凯勒锥是投影诱导的。作为主要工具,我们提供了横向凯勒度量的凯勒势与锥形度量的凯勒势之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信