Fine Representation of Hessian of Convex Functions and Ricci Tensor on RCD Spaces

IF 1 3区 数学 Q1 MATHEMATICS
Camillo Brena, Nicola Gigli
{"title":"Fine Representation of Hessian of Convex Functions and Ricci Tensor on RCD Spaces","authors":"Camillo Brena, Nicola Gigli","doi":"10.1007/s11118-024-10153-5","DOIUrl":null,"url":null,"abstract":"<p>It is known that on RCD spaces one can define a distributional Ricci tensor <span>\\(\\textbf{Ric}\\)</span>. Here we give a fine description of this object by showing that it admits the polar decomposition </p><span>$$\\begin{aligned} \\textbf{Ric}=\\omega \\,|\\textbf{Ric}| \\end{aligned}$$</span><p>for a suitable non-negative measure <span>\\(|\\textbf{Ric}|\\)</span> and unitary tensor field <span>\\(\\omega \\)</span>. The regularity of both the mass measure and of the polar vector are also described. The representation provided here allows to answer some open problems about the structure of the Ricci tensor in such singular setting. Our discussion also covers the case of Hessians of convex functions and, under suitable assumptions on the base space, of the Sectional curvature operator.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10153-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that on RCD spaces one can define a distributional Ricci tensor \(\textbf{Ric}\). Here we give a fine description of this object by showing that it admits the polar decomposition

$$\begin{aligned} \textbf{Ric}=\omega \,|\textbf{Ric}| \end{aligned}$$

for a suitable non-negative measure \(|\textbf{Ric}|\) and unitary tensor field \(\omega \). The regularity of both the mass measure and of the polar vector are also described. The representation provided here allows to answer some open problems about the structure of the Ricci tensor in such singular setting. Our discussion also covers the case of Hessians of convex functions and, under suitable assumptions on the base space, of the Sectional curvature operator.

凸函数和里奇张量在 RCD 空间上的精细表示
众所周知,在 RCD 空间上,我们可以定义一个分布式里奇张量(\textbf{Ric}\)。在这里,我们通过证明它允许极性分解 $$\begin{aligned},给出了这个对象的精细描述。\textbf{Ric}=\omega\,|\textbf{Ric}|\end{aligned}$$对于合适的非负度量\(|\textbf{Ric}|\)和单元张量场\(\omega \)。质量度量和极向量的正则性也得到了描述。这里提供的表示法可以回答在这种奇异设置下关于里奇张量结构的一些未决问题。我们的讨论还涉及凸函数的赫西亚,以及在基空间的适当假设下的截面曲率算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信