A Combination Technique for Optimal Control Problems Constrained by Random PDEs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fabio Nobile, Tommaso Vanzan
{"title":"A Combination Technique for Optimal Control Problems Constrained by Random PDEs","authors":"Fabio Nobile, Tommaso Vanzan","doi":"10.1137/22m1532263","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 693-721, June 2024. <br/> Abstract.We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, and thus the discretized OCPs preserve the (possible) convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of multilevel Monte Carlo and/or sparse grids approaches but remains suitable for high-dimensional problems. The manuscript presents an a priori procedure to choose the most important mixed differences and an analysis stating that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1532263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 693-721, June 2024.
Abstract.We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, and thus the discretized OCPs preserve the (possible) convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of multilevel Monte Carlo and/or sparse grids approaches but remains suitable for high-dimensional problems. The manuscript presents an a priori procedure to choose the most important mixed differences and an analysis stating that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.
受随机 PDE 约束的最优控制问题的组合技术
SIAM/ASA 不确定性量化期刊》,第 12 卷第 2 期,第 693-721 页,2024 年 6 月。 摘要.我们提出了一种基于空间近似和随机变量正交公式混合差分的组合技术,用于高效求解一类受随机偏微分方程约束的最优控制问题(OCP)。该方法需要求解多个低保真空间网格的 OCP 和目标函数的正交公式。然后,将所有计算出的解进行线性组合,得到最终近似值,在适当的正则性假设下,该近似值与精细张量乘积近似值的精度相同,同时大大降低了计算成本。组合技术只涉及张量乘正交公式,因此离散的 OCP 保持了连续 OCP 的(可能)凸性。因此,组合技术避免了多级蒙特卡罗和/或稀疏网格方法的不便之处,但仍适用于高维问题。手稿介绍了选择最重要混合差分的先验程序,并分析指出渐进复杂性完全由空间求解器决定。数值实验验证了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信