{"title":"The Twisted Partial Group Algebra and (Co)homology of Partial Crossed Products","authors":"Mikhailo Dokuchaev, Emmanuel Jerez","doi":"10.1007/s00574-024-00408-5","DOIUrl":null,"url":null,"abstract":"<p>Given a group <i>G</i> and a partial factor set <span>\\(\\sigma \\)</span> of <i>G</i>, we introduce the twisted partial group algebra <span>\\({\\kappa }_{\\textrm{par}}^\\sigma G,\\)</span> which governs the partial projective <span>\\(\\sigma \\)</span>-representations of <i>G</i> into algebras over a field <span>\\(\\kappa .\\)</span> Using the relation between partial projective representations and twisted partial actions we endow <span>\\({\\kappa }_{\\textrm{par}}^\\sigma G\\)</span> with the structure of a crossed product by a twisted partial action of <i>G</i> on a commutative subalgebra of <span>\\({\\kappa }_{\\textrm{par}}^\\sigma G.\\)</span> Then, we use twisted partial group algebras to obtain a first quadrant Grothendieck spectral sequence converging to the Hochschild homology of the crossed product <span>\\(A*_{\\Theta } G,\\)</span> involving the Hochschild homology of <i>A</i> and the partial homology of <i>G</i>, where <span>\\({\\Theta }\\)</span> is a unital twisted partial action of <i>G</i> on a <span>\\(\\kappa \\)</span>-algebra <i>A</i> with a <span>\\(\\kappa \\)</span>-based twist. An analogous third quadrant cohomological spectral sequence is also obtained.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00408-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a group G and a partial factor set \(\sigma \) of G, we introduce the twisted partial group algebra \({\kappa }_{\textrm{par}}^\sigma G,\) which governs the partial projective \(\sigma \)-representations of G into algebras over a field \(\kappa .\) Using the relation between partial projective representations and twisted partial actions we endow \({\kappa }_{\textrm{par}}^\sigma G\) with the structure of a crossed product by a twisted partial action of G on a commutative subalgebra of \({\kappa }_{\textrm{par}}^\sigma G.\) Then, we use twisted partial group algebras to obtain a first quadrant Grothendieck spectral sequence converging to the Hochschild homology of the crossed product \(A*_{\Theta } G,\) involving the Hochschild homology of A and the partial homology of G, where \({\Theta }\) is a unital twisted partial action of G on a \(\kappa \)-algebra A with a \(\kappa \)-based twist. An analogous third quadrant cohomological spectral sequence is also obtained.
给定一个群 G 和 G 的部分因子集 \(\sigma\),我们引入了扭曲部分群代数 \({\kappa }_{\textrm{par}}^\sigma G,\),它支配着 G 在一个域 \(\kappa.)上的部分投影 \(\sigma\)表示。\利用部分投影表示和扭曲部分作用之间的关系,我们赋予 \({\kappa }_{\textrm{par}}^\sigma G\) 一个交叉积的结构,这个交叉积是通过 G 在 \({\kappa }_{\textrm{par}}^\sigma G 的交换子代数上的扭曲部分作用而产生的。\然后,我们使用扭曲部分群集代数来得到一个第一象限格罗内迪克谱序列,该序列收敛于交叉积 \(A*_\{Theta } G. 的霍赫希尔德同调、\)涉及 A 的霍赫希尔德同源性和 G 的部分同源性,其中 \({\Theta }\) 是 G 对具有基于 \(\kappa \)扭转的 \(\kappa \)-代数 A 的单原子扭转部分作用。我们还得到了一个类似的第三象限同调谱序列。