{"title":"The fibering method approach for a Schrödinger-Poisson system with p-Laplacian in bounded domains","authors":"Jinfeng Xue, Libo Wang","doi":"10.1515/math-2024-0015","DOIUrl":null,"url":null,"abstract":"In this article, we study a <jats:italic>p</jats:italic>-Laplacian Schrödinger-Poisson system involving a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>q\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> in bounded domains. By using the Nehari manifold and the fibering method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>{q}^{* }\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that only the trivial solution is admitted for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mo>+</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>q\\in \\left({q}^{* },+\\infty ).</jats:tex-math> </jats:alternatives> </jats:inline-formula> On the other hand, there are two positive solutions existing for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\in \\left(0,{q}_{0}^{* }+\\varepsilon )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ε</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\varepsilon \\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> <m:mo><</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>.</m:mo> </m:math> <jats:tex-math>{q}_{0}^{* }+\\varepsilon \\lt {q}^{* }.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In particular, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>{q}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{q}_{0}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study a p-Laplacian Schrödinger-Poisson system involving a parameter q≠0q\ne 0 in bounded domains. By using the Nehari manifold and the fibering method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists q*>0{q}^{* }\gt 0 such that only the trivial solution is admitted for q∈(q*,+∞).q\in \left({q}^{* },+\infty ). On the other hand, there are two positive solutions existing for q∈(0,q0*+ε)q\in \left(0,{q}_{0}^{* }+\varepsilon ), where ε>0\varepsilon \gt 0 and q0*+ε<q*.{q}_{0}^{* }+\varepsilon \lt {q}^{* }. In particular, q*{q}^{* } and q0*{q}_{0}^{* } correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.