A quantum deformation of the ${\mathcal N}=2$ superconformal algebra

H. Awata, K. Harada, H. Kanno, J. Shiraishi
{"title":"A quantum deformation of the ${\\mathcal N}=2$ superconformal algebra","authors":"H. Awata, K. Harada, H. Kanno, J. Shiraishi","doi":"arxiv-2407.00901","DOIUrl":null,"url":null,"abstract":"We introduce a unital associative algebra ${\\mathcal{SV}ir\\!}_{q,k}$, having\n$q$ and $k$ as complex parameters, generated by the elements $K^\\pm_m$ ($\\pm\nm\\geq 0$), $T_m$ ($m\\in \\mathbb{Z}$), and $G^\\pm_m$ ($m\\in \\mathbb{Z}+{1\\over\n2}$ in the Neveu-Schwarz sector, $m\\in \\mathbb{Z}$ in the Ramond sector),\nsatisfying relations which are at most quartic. Calculations of some low-lying\nKac determinants are made, providing us with a conjecture for the factorization\nproperty of the Kac determinants. The analysis of the screening operators gives\na supporting evidence for our conjecture. It is shown that by taking the limit\n$q\\rightarrow 1$ of ${\\mathcal{SV}ir\\!}_{q,k}$ we recover the ordinary\n${\\mathcal N}=2$ superconformal algebra. We also give a nontrivial Heisenberg\nrepresentation of the algebra ${\\mathcal{SV}ir\\!}_{q,k}$, making a twist of the\n$U(1)$ boson in the Wakimoto representation of the quantum affine algebra\n$U_q(\\widehat{\\mathfrak{sl}}_2)$, which naturally follows from the construction\nof ${\\mathcal{SV}ir\\!}_{q,k}$ by gluing the deformed $Y$-algebras of Gaiotto\nand Rap$\\check{\\mathrm{c}}$\\'{a}k.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a unital associative algebra ${\mathcal{SV}ir\!}_{q,k}$, having $q$ and $k$ as complex parameters, generated by the elements $K^\pm_m$ ($\pm m\geq 0$), $T_m$ ($m\in \mathbb{Z}$), and $G^\pm_m$ ($m\in \mathbb{Z}+{1\over 2}$ in the Neveu-Schwarz sector, $m\in \mathbb{Z}$ in the Ramond sector), satisfying relations which are at most quartic. Calculations of some low-lying Kac determinants are made, providing us with a conjecture for the factorization property of the Kac determinants. The analysis of the screening operators gives a supporting evidence for our conjecture. It is shown that by taking the limit $q\rightarrow 1$ of ${\mathcal{SV}ir\!}_{q,k}$ we recover the ordinary ${\mathcal N}=2$ superconformal algebra. We also give a nontrivial Heisenberg representation of the algebra ${\mathcal{SV}ir\!}_{q,k}$, making a twist of the $U(1)$ boson in the Wakimoto representation of the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$, which naturally follows from the construction of ${\mathcal{SV}ir\!}_{q,k}$ by gluing the deformed $Y$-algebras of Gaiotto and Rap$\check{\mathrm{c}}$\'{a}k.
超共形代数 ${mathcal N}=2$ 的量子变形
我们引入一个单偶关联代数 ${mathcal{SV}ir\!$K^\pm_m$ ($\pmm\geq 0$), $T_m$ ($m\in \mathbb{Z}$)、和 $G^pm_m$ (在 Neveu-Schwarz 扇区为 $m\in\mathbb{Z}+{1\over2}$,在 Ramond 扇区为 $m\in\mathbb{Z}$),满足最多为四次方的关系。对一些低洼卡氏行列式的计算,为我们提供了卡氏行列式因式分解性质的猜想。对筛选算子的分析为我们的猜想提供了佐证。结果表明,通过对${\mathcal{SV}ir\!}_{q,k}$的极限$q\rightarrow 1$的取值,我们恢复了普通的${\mathcal N}=2$超共形代数。我们还给出了代数${\mathcal{SV}ir\!}_{q,k}$的非微观海森堡表示,在量子仿射代数$U_q(\widehat\{mathfrak{sl}}_2)$的脇本表示中对$U(1)$玻色子进行了扭转,这自然来自于${\mathcal{SV}ir\!和 Rap$\check\mathrm{c}}$$'{a}k 的变形 $Y$-gebras 的粘合而构造的 ${mathcal{SV}ir\!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信