Circle Actions on Oriented Manifolds With 3 Fixed Points

Pub Date : 2024-06-14 DOI:10.1093/imrn/rnae132
Donghoon Jang
{"title":"Circle Actions on Oriented Manifolds With 3 Fixed Points","authors":"Donghoon Jang","doi":"10.1093/imrn/rnae132","DOIUrl":null,"url":null,"abstract":"Let the circle group act on a compact oriented manifold $M$ with a non-empty discrete fixed point set. Then the dimension of $M$ is even. If $M$ has one fixed point, $M$ is the point. In any even dimension, such a manifold $M$ with two fixed points exists, a rotation of an even dimensional sphere. Suppose that $M$ has three fixed points. Then the dimension of $M$ is a multiple of 4. Under the assumption that each isotropy submanifold is orientable, we show that if $\\dim M=8$, then the weights at the fixed points agree with those of an action on the quaternionic projective space $\\mathbb{H}\\mathbb{P}^{2}$, and show that there is no such 12-dimensional manifold $M$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let the circle group act on a compact oriented manifold $M$ with a non-empty discrete fixed point set. Then the dimension of $M$ is even. If $M$ has one fixed point, $M$ is the point. In any even dimension, such a manifold $M$ with two fixed points exists, a rotation of an even dimensional sphere. Suppose that $M$ has three fixed points. Then the dimension of $M$ is a multiple of 4. Under the assumption that each isotropy submanifold is orientable, we show that if $\dim M=8$, then the weights at the fixed points agree with those of an action on the quaternionic projective space $\mathbb{H}\mathbb{P}^{2}$, and show that there is no such 12-dimensional manifold $M$.
分享
查看原文
有 3 个定点的定向曲面上的圆作用
让圆组作用于具有非空离散定点集的紧凑定向流形 $M$。那么 $M$ 的维数是偶数。如果 $M$ 有一个定点,$M$ 就是这个点。在任何偶数维中,都存在这样一个具有两个定点的流形 $M$,它是偶数维球面的旋转。假设 $M$ 有三个定点。在每个各向同性子流形都是可定向的假设下,我们证明如果 $\dim M=8$, 那么定点的权重与四元投影空间 $\mathbb{H}\mathbb{P}^{2}$ 上的作用一致,并证明不存在这样的 12 维流形 $M$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信