Lyapunov analysis of data-driven models of high dimensional dynamics using reservoir computing: Lorenz-96 system and fluid flow

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Miki U Kobayashi, Kengo Nakai and Yoshitaka Saiki
{"title":"Lyapunov analysis of data-driven models of high dimensional dynamics using reservoir computing: Lorenz-96 system and fluid flow","authors":"Miki U Kobayashi, Kengo Nakai and Yoshitaka Saiki","doi":"10.1088/2632-072x/ad5264","DOIUrl":null,"url":null,"abstract":"We computed the Lyapunov spectrum and finite-time Lyapunov exponents of a data-driven model constructed using reservoir computing. This analysis was performed for two dynamics that exhibit a highly dimensionally unstable structure. We focused on the reconstruction of heterochaotic dynamics, which are characterized by the coexistence of different numbers of unstable dimensions. This was achieved by computing fluctuations in the number of positive finite-time Lyapunov exponents.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"61 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad5264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We computed the Lyapunov spectrum and finite-time Lyapunov exponents of a data-driven model constructed using reservoir computing. This analysis was performed for two dynamics that exhibit a highly dimensionally unstable structure. We focused on the reconstruction of heterochaotic dynamics, which are characterized by the coexistence of different numbers of unstable dimensions. This was achieved by computing fluctuations in the number of positive finite-time Lyapunov exponents.
利用储层计算对数据驱动的高维动力学模型进行李亚普诺夫分析:洛伦兹-96 系统和流体流动
我们计算了利用水库计算构建的数据驱动模型的李亚普诺夫谱和有限时间李亚普诺夫指数。该分析是针对两个表现出高维度不稳定结构的动力学模型进行的。我们的重点是重建异相动力学,其特点是不同数量的不稳定维度并存。这是通过计算正有限时间李亚普诺夫指数的波动来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信