A Note on the Spectrality of Moran-Type Bernoulli Convolutions by Deng and Li

IF 1 3区 数学 Q1 MATHEMATICS
Yong-Shen Cao, Qi-Rong Deng, Ming-Tian Li, Sha Wu
{"title":"A Note on the Spectrality of Moran-Type Bernoulli Convolutions by Deng and Li","authors":"Yong-Shen Cao, Qi-Rong Deng, Ming-Tian Li, Sha Wu","doi":"10.1007/s40840-024-01720-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\{p_n\\}_{n\\ge 1}\\)</span> and <span>\\(\\{ d_n\\}_{n\\ge 1}\\)</span> be two sequences of integers such that <span>\\(|p_n|&gt;|d_n|&gt;0\\)</span> and <span>\\(\\{d_n\\}_{n\\ge 1}\\)</span> is bounded. It is proven by Deng and Li that the Moran-type Bernoulli convolution </p><span>$$\\begin{aligned}\\mu :=\\delta _{p_1^{-1}\\{0,d_1\\}}*\\delta _{p_1^{-1}p_2^{-1}\\{0,d_2\\}}*\\dots *\\delta _{p_1^{-1}\\dots p_n^{-1}\\{0,d_n\\}}*\\dots \\end{aligned}$$</span><p>is a spectral measure if and only if the numbers of factor 2 in the sequence <span>\\(\\big \\{\\frac{p_1p_2\\dots p_n}{2d_n}\\big \\}_{n\\ge 1}\\)</span> are different from each other. Unfortunately, there is a gap in the proof of the sufficiency. Here we give a new proof to close the gap.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01720-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\{p_n\}_{n\ge 1}\) and \(\{ d_n\}_{n\ge 1}\) be two sequences of integers such that \(|p_n|>|d_n|>0\) and \(\{d_n\}_{n\ge 1}\) is bounded. It is proven by Deng and Li that the Moran-type Bernoulli convolution

$$\begin{aligned}\mu :=\delta _{p_1^{-1}\{0,d_1\}}*\delta _{p_1^{-1}p_2^{-1}\{0,d_2\}}*\dots *\delta _{p_1^{-1}\dots p_n^{-1}\{0,d_n\}}*\dots \end{aligned}$$

is a spectral measure if and only if the numbers of factor 2 in the sequence \(\big \{\frac{p_1p_2\dots p_n}{2d_n}\big \}_{n\ge 1}\) are different from each other. Unfortunately, there is a gap in the proof of the sufficiency. Here we give a new proof to close the gap.

邓和李关于莫兰型伯努利卷积谱性的说明
让 \(\{p_n\}_{nge 1}\) 和 \(\{d_n\}_{nge 1}\) 是两个整数序列,使得 \(|p_n|>|d_n|>0\) 和 \(\{d_n}\_{nge 1}\) 是有界的。邓和李证明了莫兰型伯努利卷积 $$\begin{aligned}\mu :=\delta _{p_1^{-1}\{0,d_1\}}*\delta _{p_1^{-1}p_2^{-1}\{0,d_2\}}*\dots *\delta _{p_1^{-1}\dots p_n^{-1}\{0、当且仅当序列 \(\big \{frac{p_1p_2\dots p_n}{2d_n}\big \}_{n\ge 1}\) 中因子 2 的个数彼此不同时,d_n\}*delta 才是光谱度量。遗憾的是,关于充分性的证明存在空白。在此,我们给出一个新的证明来弥补这一缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信