A software for calculating coal mine gas emission quantity based on the different-source forecast method

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Wei Zhao, Huzi Dong, Junchen Ren, Yuan Yuan, Kai Wang, Fei Wang
{"title":"A software for calculating coal mine gas emission quantity based on the different-source forecast method","authors":"Wei Zhao, Huzi Dong, Junchen Ren, Yuan Yuan, Kai Wang, Fei Wang","doi":"10.1007/s40789-024-00703-y","DOIUrl":null,"url":null,"abstract":"<p>The ability to predict gas emissions accurately is pivotal in managing gas control and ensuring safe mining operations. Existing internationally acknowledged gas control and prediction software does not cater to the specific conditions in Chinese coal mines. Hence, this paper introduces an object-oriented programming method to design a software tool for calculating the total gas emission quantity using the MATLAB application program designer runtime environment. The software incorporates an algorithm, data structure, framework, and module functions, all of which enable seamless integration and visualization of gas emission calculation software. This software tool mitigates the inefficiencies and inaccuracies associated with manual, different-source forecast methods. Based on the field data of the Hulonggou Coal Mine in Shanxi province, this technical software was used to predict the gas emission of the mine. The research results show that the predicted value of the technical software is close to the actual measured value. The differing estimates of the working face and coal mine output primarily account for the deviation between the tool's predicted gas emission value and the field-measured value. The underlying design logic of this technical software determines that it has good adaptability to mines with clear mining technology parameters and gas geological parameters. This study provides a valuable method for researchers and engineers seeking to improve gas emission calculation efficiency.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"12 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00703-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to predict gas emissions accurately is pivotal in managing gas control and ensuring safe mining operations. Existing internationally acknowledged gas control and prediction software does not cater to the specific conditions in Chinese coal mines. Hence, this paper introduces an object-oriented programming method to design a software tool for calculating the total gas emission quantity using the MATLAB application program designer runtime environment. The software incorporates an algorithm, data structure, framework, and module functions, all of which enable seamless integration and visualization of gas emission calculation software. This software tool mitigates the inefficiencies and inaccuracies associated with manual, different-source forecast methods. Based on the field data of the Hulonggou Coal Mine in Shanxi province, this technical software was used to predict the gas emission of the mine. The research results show that the predicted value of the technical software is close to the actual measured value. The differing estimates of the working face and coal mine output primarily account for the deviation between the tool's predicted gas emission value and the field-measured value. The underlying design logic of this technical software determines that it has good adaptability to mines with clear mining technology parameters and gas geological parameters. This study provides a valuable method for researchers and engineers seeking to improve gas emission calculation efficiency.

Abstract Image

基于不同来源预测法的煤矿瓦斯排放数量计算软件
准确预测瓦斯排放的能力对于瓦斯控制管理和确保采矿作业安全至关重要。现有的国际公认的瓦斯控制和预测软件并不适合中国煤矿的具体情况。因此,本文介绍了一种面向对象的编程方法,利用 MATLAB 应用程序设计器运行环境设计了一种计算瓦斯排放总量的软件工具。该软件集算法、数据结构、框架和模块功能于一体,实现了瓦斯排放计算软件的无缝集成和可视化。该软件工具减少了人工、不同来源预测方法的低效率和不准确性。基于山西省葫芦沟煤矿的现场数据,该技术软件被用于预测该煤矿的瓦斯排放。研究结果表明,技术软件的预测值接近实际测量值。该工具预测的瓦斯排放值与现场测量值之间的偏差主要是由于对工作面和煤矿产量的估计不同造成的。该技术软件的基本设计逻辑决定了它对具有明确开采技术参数和瓦斯地质参数的矿井具有良好的适应性。这项研究为寻求提高瓦斯排放计算效率的研究人员和工程师提供了一种有价值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信