Large Deviation Principle for Stochastic Reaction–Diffusion Equations with Superlinear Drift on $$\mathbb {R}$$ Driven by Space–Time White Noise

Pub Date : 2024-06-17 DOI:10.1007/s10959-024-01345-1
Yue Li, Shijie Shang, Jianliang Zhai
{"title":"Large Deviation Principle for Stochastic Reaction–Diffusion Equations with Superlinear Drift on $$\\mathbb {R}$$ Driven by Space–Time White Noise","authors":"Yue Li, Shijie Shang, Jianliang Zhai","doi":"10.1007/s10959-024-01345-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider stochastic reaction–diffusion equations with superlinear drift on the real line <span>\\(\\mathbb {R}\\)</span> driven by space–time white noise. A Freidlin–Wentzell large deviation principle is established by a modified weak convergence method on the space <span>\\(C([0,T], C_\\textrm{tem}(\\mathbb {R}))\\)</span>, where <span>\\(C_\\textrm{tem}(\\mathbb {R}):=\\{f\\in C(\\mathbb {R}): \\sup _{x\\in \\mathbb {R}} \\left( |f(x)|e^{-\\lambda |x|}\\right) &lt;\\infty \\text { for any } \\lambda &gt;0\\}\\)</span>. Obtaining the main result in this paper is challenging due to the setting of unbounded domain, the space–time white noise, and the superlinear drift term without dissipation. To overcome these difficulties, the specially designed family of norms on the Fréchet space <span>\\(C([0,T], C_\\textrm{tem}(\\mathbb {R}))\\)</span>, one-order moment estimates of the stochastic convolution, and two nonlinear Gronwall-type inequalities play an important role.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01345-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider stochastic reaction–diffusion equations with superlinear drift on the real line \(\mathbb {R}\) driven by space–time white noise. A Freidlin–Wentzell large deviation principle is established by a modified weak convergence method on the space \(C([0,T], C_\textrm{tem}(\mathbb {R}))\), where \(C_\textrm{tem}(\mathbb {R}):=\{f\in C(\mathbb {R}): \sup _{x\in \mathbb {R}} \left( |f(x)|e^{-\lambda |x|}\right) <\infty \text { for any } \lambda >0\}\). Obtaining the main result in this paper is challenging due to the setting of unbounded domain, the space–time white noise, and the superlinear drift term without dissipation. To overcome these difficulties, the specially designed family of norms on the Fréchet space \(C([0,T], C_\textrm{tem}(\mathbb {R}))\), one-order moment estimates of the stochastic convolution, and two nonlinear Gronwall-type inequalities play an important role.

分享
查看原文
时空白噪声驱动 $$\mathbb {R}$ 上超线性漂移的随机反应-扩散方程的大偏差原理
本文考虑了由时空白噪声驱动的实线 \(\mathbb {R}\)上具有超线性漂移的随机反应扩散方程。在空间 \(C([0,T], C_\textrm{tem}(\mathbb {R}))\) 上,通过改进的弱收敛方法建立了 Freidlin-Wentzell 大偏差原理,其中 \(C_\textrm{tem}(\mathbb {R}):=\{f\in C(\mathbb {R}):\sup _{x\in \mathbb {R}}\leave( |f(x)|e^{-\lambda |x|}\right) <\infty \text { for any }\)。由于设置了无界域、时空白噪声和无耗散的超线性漂移项,获得本文的主要结果具有挑战性。为了克服这些困难,特别设计的弗雷谢特空间(C([0,T], C_\textrm{tem}(\mathbb {R}))上的规范族、随机卷积的一阶矩估计和两个非线性格朗沃式不等式发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信