Bent functions satisfying the dual bent condition and permutations with the $$(\mathcal {A}_m)$$ property

Alexandr Polujan, Enes Pasalic, Sadmir Kudin, Fengrong Zhang
{"title":"Bent functions satisfying the dual bent condition and permutations with the $$(\\mathcal {A}_m)$$ property","authors":"Alexandr Polujan, Enes Pasalic, Sadmir Kudin, Fengrong Zhang","doi":"10.1007/s12095-024-00724-z","DOIUrl":null,"url":null,"abstract":"<p>The concatenation of four Boolean bent functions <span>\\(f=f_1||f_2||f_3||f_4\\)</span> is bent if and only if the dual bent condition <span>\\(f_1^* + f_2^* + f_3^* + f_4^* =1\\)</span> is satisfied. However, to specify four bent functions satisfying this duality condition is in general quite a difficult task. Commonly, to simplify this problem, certain relations between <span>\\(f_i\\)</span> are assumed, as well as functions <span>\\(f_i\\)</span> of a special shape are considered, e.g., <span>\\(f_i(x,y)=x\\cdot \\pi _i(y)+h_i(y)\\)</span> are Maiorana-McFarland bent functions. In the case when permutations <span>\\(\\pi _i\\)</span> of <span>\\(\\mathbb {F}_2^m\\)</span> have the <span>\\((\\mathcal {A}_m)\\)</span> property and Maiorana-McFarland bent functions <span>\\(f_i\\)</span> satisfy the additional condition <span>\\(f_1+f_2+f_3+f_4=0\\)</span>, the dual bent condition is known to have a relatively simple shape allowing to specify the functions <span>\\(f_i\\)</span> explicitly. In this paper, we generalize this result for the case when Maiorana-McFarland bent functions <span>\\(f_i\\)</span> satisfy the condition <span>\\(f_1(x,y)+f_2(x,y)+f_3(x,y)+f_4(x,y)=s(y)\\)</span> and provide a construction of new permutations with the <span>\\((\\mathcal {A}_m)\\)</span> property from the old ones. Combining these two results, we obtain a recursive construction method of bent functions satisfying the dual bent condition. Moreover, we provide a generic condition on the Maiorana-McFarland bent functions <span>\\(f_1,f_2,f_3,f_4\\)</span> stemming from the permutations of <span>\\(\\mathbb {F}_2^m\\)</span> with the <span>\\((\\mathcal {A}_m)\\)</span> property, such that the concatenation <span>\\(f=f_1||f_2||f_3||f_4\\)</span> does not belong, up to equivalence, to the Maiorana-McFarland class. Using monomial permutations <span>\\(\\pi _i\\)</span> of <span>\\(\\mathbb {F}_{2^m}\\)</span> with the <span>\\((\\mathcal {A}_m)\\)</span> property and monomial functions <span>\\(h_i\\)</span> on <span>\\(\\mathbb {F}_{2^m}\\)</span>, we provide explicit constructions of such bent functions; a particular case of our result shows how one can construct bent functions from APN permutations, when <i>m</i> is odd. Finally, with our construction method, we explain how one can construct homogeneous cubic bent functions, noticing that only very few design methods of these objects are known.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00724-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concatenation of four Boolean bent functions \(f=f_1||f_2||f_3||f_4\) is bent if and only if the dual bent condition \(f_1^* + f_2^* + f_3^* + f_4^* =1\) is satisfied. However, to specify four bent functions satisfying this duality condition is in general quite a difficult task. Commonly, to simplify this problem, certain relations between \(f_i\) are assumed, as well as functions \(f_i\) of a special shape are considered, e.g., \(f_i(x,y)=x\cdot \pi _i(y)+h_i(y)\) are Maiorana-McFarland bent functions. In the case when permutations \(\pi _i\) of \(\mathbb {F}_2^m\) have the \((\mathcal {A}_m)\) property and Maiorana-McFarland bent functions \(f_i\) satisfy the additional condition \(f_1+f_2+f_3+f_4=0\), the dual bent condition is known to have a relatively simple shape allowing to specify the functions \(f_i\) explicitly. In this paper, we generalize this result for the case when Maiorana-McFarland bent functions \(f_i\) satisfy the condition \(f_1(x,y)+f_2(x,y)+f_3(x,y)+f_4(x,y)=s(y)\) and provide a construction of new permutations with the \((\mathcal {A}_m)\) property from the old ones. Combining these two results, we obtain a recursive construction method of bent functions satisfying the dual bent condition. Moreover, we provide a generic condition on the Maiorana-McFarland bent functions \(f_1,f_2,f_3,f_4\) stemming from the permutations of \(\mathbb {F}_2^m\) with the \((\mathcal {A}_m)\) property, such that the concatenation \(f=f_1||f_2||f_3||f_4\) does not belong, up to equivalence, to the Maiorana-McFarland class. Using monomial permutations \(\pi _i\) of \(\mathbb {F}_{2^m}\) with the \((\mathcal {A}_m)\) property and monomial functions \(h_i\) on \(\mathbb {F}_{2^m}\), we provide explicit constructions of such bent functions; a particular case of our result shows how one can construct bent functions from APN permutations, when m is odd. Finally, with our construction method, we explain how one can construct homogeneous cubic bent functions, noticing that only very few design methods of these objects are known.

满足对偶弯曲条件的弯曲函数和具有 $$(\mathcal {A}_m)$$ 属性的排列组合
当且仅当对偶弯曲条件 \(f_1^* + f_2^* + f_3^* + f_4^* =1/)满足时,四个布尔弯曲函数 \(f=f_1||f_2||f_3||f_4\) 的连接才是弯曲的。然而,要指定满足这一对偶条件的四个弯曲函数通常是相当困难的任务。通常,为了简化这个问题,会假设 \(f_i\)之间存在某些关系,也会考虑特殊形状的函数 \(f_i\),例如 \(f_i(x,y)=x\cdot \pi _i(y)+h_i(y)\) 是 Maiorana-McFarland 弯曲函数。当\(\mathbb {F}_2^m\)的排列组合\(\pi _i\)具有\((\mathcal {A}_m)\)性质,并且Maiorana-McFarland弯曲函数\(f_i\)满足附加条件\(f_1+f_2+f_3+f_4=0\)时,已知对偶弯曲条件具有相对简单的形状,允许明确指定函数\(f_i\)。在本文中,我们将这一结果概括为当 Maiorana-McFarland 弯曲函数 \(f_i\) 满足条件 \(f_1(x,y)+f_2(x,y)+f_3(x,y)+f_4(x,y)=s(y)\) 时的情况,并提供了一种从旧的具有 \((\mathcal {A}_m)\) 性质的新排列组合的构造。结合这两个结果,我们得到了满足对偶弯曲条件的弯曲函数的递归构造方法。此外,我们还提供了一个关于 Maiorana-McFarland 弯曲函数 \(f_1,f_2,f_3,f_4\)的通用条件,它源于具有 \((\mathcal {A}_m)\) 性质的 \(\mathbb {F}_2^m\) 的排列、这样的连接 \(f=f_1||f_2||f_3||f_4\)在等价性上不属于 Maiorana-McFarland 类。利用具有((\mathcal {A}_m)\)性质的\(\mathbb {F}_{2^m}\) 的单项式排列和\(\mathbb {F}_{2^m}\) 上的单项式函数\(h_i\),我们提供了这种弯曲函数的明确构造;我们的结果的一个特殊情况显示了当 m 为奇数时,如何从 APN 置换构造弯曲函数。最后,通过我们的构造方法,我们解释了如何构造同次立方弯曲函数,同时注意到这些对象的设计方法鲜为人知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信