Jinlin Wang, Qi Liu, Ran Feng, Haotian Ye, Xifan Xu, Rui Wang, Tao Wang, Xinqiang Wang
{"title":"In‐situ Observation of Atomic Diffusion at Epitaxial Al/Si Interface","authors":"Jinlin Wang, Qi Liu, Ran Feng, Haotian Ye, Xifan Xu, Rui Wang, Tao Wang, Xinqiang Wang","doi":"10.1002/pssr.202400175","DOIUrl":null,"url":null,"abstract":"High‐quality aluminum (Al) /silicon (Si) heterojunction is crucial in a wide range of applications, such as superconductivity, interfacial heat exchanging, interconnection of Si‐based transistors, etc. However, serious Al/Si heterointerface degradation has been observed when operating at relatively higher temperatures. Understanding the interfacial atomic diffusion is thus a vital step for improving the Al/Si interface quality. We report the atomic diffusion behavior at an epitaxial Al/Si interface via in‐situ heating in Cs‐corrected scanning transmission electron microscopy (STEM). After heating to 493 ± 20 K, the Al/Si interface gradually migrates towards the Al side. This interfacial atomic migration is more active along grain boundaries due to weaker bonding between atoms caused by misorientation of grains. The new interface exhibits a trapezoidal shape, characterized by a slanted smooth left facet and a stepped right facet. This distinct morphology is attributed to minimizing the interfacial energy. Additionally, the migrated Si atoms tend to form a new nanocrystal following the initial lattice orientation in Al, while the diffused Al atoms are usually randomly inserted into the Si lattice matrix among a large region, which can be attributed to lower bonding energy of Al compared with Si.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400175","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High‐quality aluminum (Al) /silicon (Si) heterojunction is crucial in a wide range of applications, such as superconductivity, interfacial heat exchanging, interconnection of Si‐based transistors, etc. However, serious Al/Si heterointerface degradation has been observed when operating at relatively higher temperatures. Understanding the interfacial atomic diffusion is thus a vital step for improving the Al/Si interface quality. We report the atomic diffusion behavior at an epitaxial Al/Si interface via in‐situ heating in Cs‐corrected scanning transmission electron microscopy (STEM). After heating to 493 ± 20 K, the Al/Si interface gradually migrates towards the Al side. This interfacial atomic migration is more active along grain boundaries due to weaker bonding between atoms caused by misorientation of grains. The new interface exhibits a trapezoidal shape, characterized by a slanted smooth left facet and a stepped right facet. This distinct morphology is attributed to minimizing the interfacial energy. Additionally, the migrated Si atoms tend to form a new nanocrystal following the initial lattice orientation in Al, while the diffused Al atoms are usually randomly inserted into the Si lattice matrix among a large region, which can be attributed to lower bonding energy of Al compared with Si.This article is protected by copyright. All rights reserved.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.