Old and new Morrey spaces without heat kernel bounds on RD-spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
Bo Li, Ba. Li, B. Ma, A. Wang, J. Li
{"title":"Old and new Morrey spaces without heat kernel bounds on RD-spaces","authors":"Bo Li,&nbsp;Ba. Li,&nbsp;B. Ma,&nbsp;A. Wang,&nbsp;J. Li","doi":"10.1007/s10476-024-00026-9","DOIUrl":null,"url":null,"abstract":"<div><p>An RD-space <span>\\(\\mathcal{X}\\)</span> is a space of homogeneous type in the sense of Coifman and Weiss satisfying a certain reverse (volume) doubling condition.\nLet <span>\\(L\\)</span> be a non-negative self-adjoint operator acting on <span>\\(L^2(\\mathcal{X})\\)</span>.\nAssume that <span>\\(L\\)</span> generates an analytic semigroup <span>\\(\\{\\mathrm{e}^{-tL}\\}_{t&gt;0}\\)</span> whose kernels <span>\\(\\{h_t(x,y)\\}_{t&gt;0}\\)</span> satisfy a generalized Gaussian heat kernel upper estimate.\nRoughly speaking, the heat kernel behavior is a mixture of locally Gaussian and sub-Gaussian at infinity.\nWith the help of this Gaussian heat kernel, we first introduce a novel Morrey space and then prove that it coincides with the classical Morrey space.\nAs applications, some new characterizations of square Morrey space are established via a Carleson measure condition.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00026-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An RD-space \(\mathcal{X}\) is a space of homogeneous type in the sense of Coifman and Weiss satisfying a certain reverse (volume) doubling condition. Let \(L\) be a non-negative self-adjoint operator acting on \(L^2(\mathcal{X})\). Assume that \(L\) generates an analytic semigroup \(\{\mathrm{e}^{-tL}\}_{t>0}\) whose kernels \(\{h_t(x,y)\}_{t>0}\) satisfy a generalized Gaussian heat kernel upper estimate. Roughly speaking, the heat kernel behavior is a mixture of locally Gaussian and sub-Gaussian at infinity. With the help of this Gaussian heat kernel, we first introduce a novel Morrey space and then prove that it coincides with the classical Morrey space. As applications, some new characterizations of square Morrey space are established via a Carleson measure condition.

RD 空间上无热核边界的新旧莫雷空间
让 \(L\) 是一个作用在 \(L^2(\mathcal{X})\) 上的非负自相加算子。假设 \(L\) 产生一个解析半群 \(\{mathrm{e}^{-tL}\}_{t>0}\),其核 \(\{h_t(x,y)\}_{t>0}\)满足广义高斯热核上估计。借助这种高斯热核,我们首先引入了一种新的莫雷空间(Morrey space),然后证明它与经典的莫雷空间(Morrey space)重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信