Uniform stability in the Euclidean isoperimetric problem for the Allen–Cahn energy

IF 1.8 1区 数学 Q1 MATHEMATICS
Francesco Maggi, Daniel Restrepo
{"title":"Uniform stability in the Euclidean isoperimetric problem for the Allen–Cahn energy","authors":"Francesco Maggi, Daniel Restrepo","doi":"10.2140/apde.2024.17.1761","DOIUrl":null,"url":null,"abstract":"<p>We consider the isoperimetric problem defined on the whole <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> by the Allen–Cahn energy functional. For nondegenerate double-well potentials, we prove sharp quantitative stability inequalities of quadratic type which are uniform in the length scale of the phase transitions. We also derive a rigidity theorem for critical points analogous to the classical Alexandrov theorem for constant mean curvature boundaries. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1761","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the isoperimetric problem defined on the whole n by the Allen–Cahn energy functional. For nondegenerate double-well potentials, we prove sharp quantitative stability inequalities of quadratic type which are uniform in the length scale of the phase transitions. We also derive a rigidity theorem for critical points analogous to the classical Alexandrov theorem for constant mean curvature boundaries.

艾伦-卡恩能量的欧几里得等周问题中的均匀稳定性
我们考虑了艾伦-卡恩能量函数在整个ℝn 上定义的等周问题。对于非enerate 双阱势,我们证明了二次型的尖锐定量稳定性不等式,这些不等式在相变的长度尺度上是均匀的。我们还推导出临界点的刚性定理,类似于恒定平均曲率边界的经典亚历山大定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信