Rigidity of Free Boundary Minimal Disks in Mean Convex Three-Manifolds

Rondinelle Batista, Barnabé Lima, João Silva
{"title":"Rigidity of Free Boundary Minimal Disks in Mean Convex Three-Manifolds","authors":"Rondinelle Batista, Barnabé Lima, João Silva","doi":"10.1007/s12220-024-01727-1","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this article is to study rigidity of free boundary minimal two-disks that locally maximize the modified Hawking mass on a Riemannian three-manifold with a positive lower bound on its scalar curvature and mean convex boundary. Assuming the strict stability of <span>\\(\\Sigma \\)</span>, we prove that a neighborhood of it in <i>M</i> is isometric to one of the half de Sitter–Schwarzschild space.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01727-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to study rigidity of free boundary minimal two-disks that locally maximize the modified Hawking mass on a Riemannian three-manifold with a positive lower bound on its scalar curvature and mean convex boundary. Assuming the strict stability of \(\Sigma \), we prove that a neighborhood of it in M is isometric to one of the half de Sitter–Schwarzschild space.

平均凸三网格中自由边界最小盘的刚性
本文的目的是研究自由边界极小二盘的刚性,它能局部最大化具有正下限标量曲率和平均凸边界的黎曼三芒星上的修正霍金质量。假设\(\Sigma \)严格稳定,我们证明它在M中的一个邻域与半德西特-施瓦兹柴尔德空间的一个邻域等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信