Partial metrics and normed inverse semigroups

Pub Date : 2024-06-12 DOI:10.1007/s00233-024-10442-w
Paul Poncet
{"title":"Partial metrics and normed inverse semigroups","authors":"Paul Poncet","doi":"10.1007/s00233-024-10442-w","DOIUrl":null,"url":null,"abstract":"<p>Relying on the notions of submodular function and partial metric, we introduce normed inverse semigroups as a generalization of normed groups and sup-semilattices equipped with an upper valuation. We define the property of skew-convexity for a metric on an inverse semigroup, and prove that every norm on a Clifford semigroup gives rise to a right-subinvariant and skew-convex metric; it makes the semigroup into a Hausdorff topological inverse semigroup if the norm is cyclically permutable. Conversely, we show that every Clifford monoid equipped with a right-subinvariant and skew-convex metric admits a norm for which the metric topology and the norm topology coincide. We characterize convergence of nets and show that Cauchy completeness implies conditional monotone completeness with respect to the natural partial order of the inverse semigroup.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10442-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relying on the notions of submodular function and partial metric, we introduce normed inverse semigroups as a generalization of normed groups and sup-semilattices equipped with an upper valuation. We define the property of skew-convexity for a metric on an inverse semigroup, and prove that every norm on a Clifford semigroup gives rise to a right-subinvariant and skew-convex metric; it makes the semigroup into a Hausdorff topological inverse semigroup if the norm is cyclically permutable. Conversely, we show that every Clifford monoid equipped with a right-subinvariant and skew-convex metric admits a norm for which the metric topology and the norm topology coincide. We characterize convergence of nets and show that Cauchy completeness implies conditional monotone completeness with respect to the natural partial order of the inverse semigroup.

分享
查看原文
部分度量和规范化反半群
根据子模函数和偏度量的概念,我们引入了规范化反半群,作为规范化群和超半格的一般化,并配备了上估值。我们定义了反半群上度量的偏凸性质,并证明了克利福德半群上的每一个规范都会产生一个右次不变和偏凸的度量;如果规范是循环可变的,它就会使半群成为一个豪斯多夫拓扑反半群。反过来,我们证明了每一个具有右次不变和偏凸度量的克利福德单元都有一个度量拓扑和规范拓扑重合的规范。我们描述了网的收敛性,并证明考奇完备性意味着关于逆半群自然偏序的条件单调完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信