Cycles in graphs and in hypergraphs (in Russian)

S. Dzhenzher, A. Miroshnikov, O. Nikitenko, A. Skopenkov
{"title":"Cycles in graphs and in hypergraphs (in Russian)","authors":"S. Dzhenzher, A. Miroshnikov, O. Nikitenko, A. Skopenkov","doi":"arxiv-2406.16705","DOIUrl":null,"url":null,"abstract":"In this expository paper we present some ideas of algebraic topology in a\nlanguage accessible to non-specialists in the area. A $1$-cycle in a graph is a\nset $C$ of edges such that every vertex is contained in an even number of edges\nfrom $C$. It is easy to check that the sum (modulo $2$) of $1$-cycles is a\n$1$-cycle. We start from the following problems: to find $\\bullet$ the number of all $1$-cycles in a given graph; $\\bullet$ a small number of $1$-cycles in a given graph such that any\n$1$-cycle is the sum of some of them. We consider generalizations (of these problems) to graphs with symmetry, to\n$2$-cycles in $2$-dimensional hypergraphs, and to certain configuration spaces\nof graphs (namely, to the square and the deleted square).","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this expository paper we present some ideas of algebraic topology in a language accessible to non-specialists in the area. A $1$-cycle in a graph is a set $C$ of edges such that every vertex is contained in an even number of edges from $C$. It is easy to check that the sum (modulo $2$) of $1$-cycles is a $1$-cycle. We start from the following problems: to find $\bullet$ the number of all $1$-cycles in a given graph; $\bullet$ a small number of $1$-cycles in a given graph such that any $1$-cycle is the sum of some of them. We consider generalizations (of these problems) to graphs with symmetry, to $2$-cycles in $2$-dimensional hypergraphs, and to certain configuration spaces of graphs (namely, to the square and the deleted square).
图中和超图中的循环(俄语)
在这篇说明性论文中,我们用该领域非专业人士可以理解的语言介绍了代数拓扑学的一些观点。图中的 1$ 循环是边的集合 $C$,每个顶点都包含在来自 $C$ 的偶数条边中。1$ 循环的和(模为 2$)是一个 1$ 循环,这一点很容易检验。我们从以下问题出发:在给定的图中找出所有 1$$-循环的数目 $\bullet$;在给定的图中找出少量的 1$$-循环,使得任何 1$$-循环都是其中一些循环之和。我们考虑将(这些问题)推广到具有对称性的图形、2$维超图中的 2$ 循环以及图形的某些配置空间(即正方形和删除正方形)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信