{"title":"Boundary effect and correlations in fermionic Gaussian states","authors":"Jinhyeok Ryu, Jaeyoon Cho","doi":"10.1007/s40042-024-01126-3","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of boundaries on the bulk properties of quantum many-body systems is an intriguing subject of study. One can define a boundary effect function, which quantifies the change in the ground state as a function of the distance from the boundary. This function serves as an upper bound for the correlation functions and the entanglement entropies in the thermodynamic limit. Here, we perform numerical analyses of the boundary effect function for one-dimensional free-fermion models. We find that the upper bound established by the boundary effect function is tight for the examined systems, providing a deep insight into how correlations and entanglement are developed in the ground state as the system size grows. As a by-product, we derive a general fidelity formula for fermionic Gaussian states in a self-contained manner, rendering the formula easier to apprehend.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 5","pages":"389 - 396"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01126-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of boundaries on the bulk properties of quantum many-body systems is an intriguing subject of study. One can define a boundary effect function, which quantifies the change in the ground state as a function of the distance from the boundary. This function serves as an upper bound for the correlation functions and the entanglement entropies in the thermodynamic limit. Here, we perform numerical analyses of the boundary effect function for one-dimensional free-fermion models. We find that the upper bound established by the boundary effect function is tight for the examined systems, providing a deep insight into how correlations and entanglement are developed in the ground state as the system size grows. As a by-product, we derive a general fidelity formula for fermionic Gaussian states in a self-contained manner, rendering the formula easier to apprehend.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.