Stochastic Earned Value Analysis using Monte Carlo Simulation and Statistical Learning Techniques

Fernando Acebes, M Pereda, David Poza, Javier Pajares, Jose M Galan
{"title":"Stochastic Earned Value Analysis using Monte Carlo Simulation and Statistical Learning Techniques","authors":"Fernando Acebes, M Pereda, David Poza, Javier Pajares, Jose M Galan","doi":"arxiv-2406.02589","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to describe a new an integrated methodology for\nproject control under uncertainty. This proposal is based on Earned Value\nMethodology and risk analysis and presents several refinements to previous\nmethodologies. More specifically, the approach uses extensive Monte Carlo\nsimulation to obtain information about the expected behavior of the project.\nThis dataset is exploited in several ways using different statistical learning\nmethodologies in a structured fashion. Initially, simulations are used to\ndetect if project deviations are a consequence of the expected variability\nusing Anomaly Detection algorithms. If the project follows this expected\nvariability, probabilities of success in cost and time and expected cost and\ntotal duration of the project can be estimated using classification and\nregression approaches.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to describe a new an integrated methodology for project control under uncertainty. This proposal is based on Earned Value Methodology and risk analysis and presents several refinements to previous methodologies. More specifically, the approach uses extensive Monte Carlo simulation to obtain information about the expected behavior of the project. This dataset is exploited in several ways using different statistical learning methodologies in a structured fashion. Initially, simulations are used to detect if project deviations are a consequence of the expected variability using Anomaly Detection algorithms. If the project follows this expected variability, probabilities of success in cost and time and expected cost and total duration of the project can be estimated using classification and regression approaches.
利用蒙特卡罗模拟和统计学习技术进行随机挣值分析
本文旨在介绍一种新的综合方法,用于不确定情况下的项目控制。该建议基于挣值方法和风险分析,并对以前的方法进行了若干改进。更具体地说,该方法使用大量的蒙特卡洛模拟来获取有关项目预期行为的信息,并以结构化的方式使用不同的统计学习方法,以多种方式利用该数据集。起初,我们使用模拟来检测项目偏差是否是异常检测算法预期变化的结果。如果项目遵循这种预期变异性,则可以使用分类和回归方法估算项目在成本和时间方面的成功概率以及预期成本和总工期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信