Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ilia Kevlishvili, Roland Gerard St. Michel, Aaron Garrison, Jacob Toney, Husain Adamji, Hao-Jun Jia, Yuriy Roman-Leshkov, Heather Kulik
{"title":"Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes","authors":"Ilia Kevlishvili, Roland Gerard St. Michel, Aaron Garrison, Jacob Toney, Husain Adamji, Hao-Jun Jia, Yuriy Roman-Leshkov, Heather Kulik","doi":"10.1039/d4fd00087k","DOIUrl":null,"url":null,"abstract":"The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure–property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21,631 compounds in tmCAT, 4,599 in tmPHOTO, 2,782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure–property relationships with machine learning.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00087k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure–property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21,631 compounds in tmCAT, 4,599 in tmPHOTO, 2,782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure–property relationships with machine learning.
利用自然语言处理技术整理过渡金属功能复合物的 tmCAT、tmPHOTO、tmBIO 和 tmSCO 数据集
剑桥结构数据库(Cambridge Structural Database)和衍生计算数据库 tmQM 等数据库所涵盖的过渡金属化学空间的广度不利于特定应用建模和结构-性质关系的发展。在这里,我们采用了监督和非监督自然语言处理(NLP)技术,将 tmQM 数据库中的实验合成化合物与其各自的应用联系起来。利用 NLP 模型,我们策划了四个不同的数据集:tmCAT(催化)、tmPHOTO(光物理活性)、tmBIO(生物相关性)和 tmSCO(磁性)。对每个数据集中的化学子结构进行分析,可以发现每个指定应用中的共同化学主题。然后,我们利用这些常见的化学结构来扩充每个应用的初始数据集,最终在 tmCAT、tmPHOTO、tmBIO 和 tmSCO 中分别得到 21,631、4,599、2,782 和 983 个化合物。这些数据集有望加速更有针对性的计算筛选,并利用机器学习开发精细的结构-性质关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信